Experimental and numerical penetration response of laser-welded stiffened panels

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKõrgesaar, Mihkelen_US
dc.contributor.authorRomanoff, Janien_US
dc.contributor.authorRemes, Heikkien_US
dc.contributor.authorPalokangas, Pekkaen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorMarine Technologyen
dc.date.accessioned2018-02-09T09:53:08Z
dc.date.available2018-02-09T09:53:08Z
dc.date.issued2018-04-01en_US
dc.description.abstractDuctile fracture in large structures is often resolved with non-linear finite element (FE) simulations employing structural shell elements which are larger than localization zone. This makes solution element size dependent and calibration of material parameters complex. Therefore, the paper explores the ability of numerical simulations to capture the penetration resistance of stiffened panels after determining steel material fracture ductility at different stress states. The numerical simulations are compared with experiments performed with rigidly fixed 1.2 m square panels penetrated with half-sphere indenter until fracture took place. Response of the panels was measured in terms of indentation force versus indenter displacement. In parallel, tensile tests were performed with four different flat specimens extracted from the face sheet of panels to characterize the material fracture ductility at different stress states. Panel simulations were performed with two fracture criteria: one calibrated based on the test data from dog-bone specimen and other calibrated based on the data from all tensile tests. To evaluate the fracture criteria in terms of their capacity to handle mesh size variations, mesh size was varied from fine to coarse. Results suggest that fracture criterion calibrated based on the range of stress states can handle mesh size variations more effectively as displacement to fracture showed considerably weaker mesh size dependence.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKõrgesaar, M, Romanoff, J, Remes, H & Palokangas, P 2018, 'Experimental and numerical penetration response of laser-welded stiffened panels', International Journal of Impact Engineering, vol. 114, pp. 78-92. https://doi.org/10.1016/j.ijimpeng.2017.12.014en
dc.identifier.doi10.1016/j.ijimpeng.2017.12.014en_US
dc.identifier.issn0734-743X
dc.identifier.issn1879-3509
dc.identifier.otherPURE UUID: 0c45a153-1574-4013-8cf9-ccc23bd42798en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0c45a153-1574-4013-8cf9-ccc23bd42798en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85038830250&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/17016457/Korgesaar_etal_IJIE_114_78.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/29731
dc.identifier.urnURN:NBN:fi:aalto-201802091227
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesInternational Journal of Impact Engineeringen
dc.relation.ispartofseriesVolume 114, pp. 78-92en
dc.rightsopenAccessen
dc.subject.keywordDuctile fractureen_US
dc.subject.keywordFracture simulationsen_US
dc.subject.keywordPanel indentationen_US
dc.subject.keywordStiffened panelen_US
dc.subject.keywordTensile testingen_US
dc.titleExperimental and numerical penetration response of laser-welded stiffened panelsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files