Real-Time Client-Side Phishing Prevention

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorMarchal, Samuel
dc.contributor.authorArmano, Giovanni
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorAsokan, N
dc.date.accessioned2016-08-26T09:17:43Z
dc.date.available2016-08-26T09:17:43Z
dc.date.issued2016-08-24
dc.description.abstractIn the last decades researchers and companies have been working to deploy effective solutions to steer users away from phishing websites. These solutions are typically based on servers or blacklisting systems. Such approaches have several drawbacks: they compromise user privacy, rely on off-line analysis, are not robust against adaptive attacks and do not provide much guidance to the users in their warnings. To address these limitations, we developed a fast real-time client-side phishing prevention software that implements a phishing detection technique recently developed by Marchal et al. It extracts information from the visited webpage and detects if it is a phish to warn the user. It is also able to detect the website that the phish is trying to mimic and propose a redirection to the legitimate domain. Furthermore, to attest the validity of our solution we performed two user studies to evaluate the usability of the interface and the program's impact on user experience.en
dc.format.extent76 + 13
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/21674
dc.identifier.urnURN:NBN:fi:aalto-201608263130
dc.language.isoenen
dc.programmeMaster’s Programme in Computer, Communication and Information Sciencesfi
dc.programme.majorTietoliikenneohjelmistotfi
dc.programme.mcodeT3005fi
dc.rights.accesslevelopenAccess
dc.subject.keywordphishingen
dc.subject.keywordpreventionen
dc.subject.keywordsecurityen
dc.subject.keywordprivacyen
dc.titleReal-Time Client-Side Phishing Preventionen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.okmG2 Pro gradu, diplomityö
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
dc.type.publicationmasterThesis
local.aalto.idinssi54341
local.aalto.openaccessyes

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
master_armano_giovanni_2017.pdf
Size:
4.71 MB
Format:
Adobe Portable Document Format
Description: