Optimizing Multiple Consumer-specific Objectives in End-to-End Ensemble Machine Learning Serving

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNguyen, Tri
dc.contributor.authorTruong, Linh
dc.contributor.authorArcaini, Paolo
dc.contributor.authorIshikawa, Fuyuki
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.organizationNational Institute of Informatics
dc.date.accessioned2024-11-06T06:17:04Z
dc.date.available2024-11-06T06:17:04Z
dc.date.issued2024-11-05
dc.description.abstractOptimizing the quality of machine learning (ML) services for individual consumers with specific objectives is crucial for improving consumer satisfaction. In this context, end-to-end ensemble ML serving (EEMLS) faces many challenges in selecting and deploying ensembles of ML models on diverse resources across the edge-cloud continuum. This paper provides a method for evaluating the runtime performance of inference services via consumer-defined metrics. We enable ML consumers to define high-level metrics and consider consumer satisfaction in estimating service costs. Moreover, we introduce a time-efficient ensemble selection algorithm to optimize the EEMLS with intricate trade-offs between service quality and costs. Our intensive experiments demonstrate that the algorithm can be executed periodically despite the extensive search space, enabling dedicated optimization for individual consumers in dynamic contexts.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdf
dc.identifier.citationNguyen, T, Truong, L, Arcaini, P & Ishikawa, F 2024, ' Optimizing Multiple Consumer-specific Objectives in End-to-End Ensemble Machine Learning Serving ', Paper presented at IEEE/ACM International Conference on Utility and Cloud Computing, Sharjah, United Arab Emirates, 16/12/2024 - 19/12/2024 .en
dc.identifier.otherPURE UUID: 1f341878-3f51-4ea2-9727-f334c5c349e8
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1f341878-3f51-4ea2-9727-f334c5c349e8
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/163445081/UCC_2024.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131503
dc.identifier.urnURN:NBN:fi:aalto-202411067019
dc.language.isoenen
dc.relation.ispartofIEEE/ACM International Conference on Utility and Cloud Computingen
dc.rightsopenAccessen
dc.subject.keywordML Serving
dc.subject.keywordEnsemble Selection
dc.subject.keywordEnsemble ML
dc.subject.keywordEnd-to-End ML
dc.subject.keywordPerformance Evaluation
dc.titleOptimizing Multiple Consumer-specific Objectives in End-to-End Ensemble Machine Learning Servingen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionproof

Files