Regression plane concept for analysing continuous cellular processes with machine learning
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Szkalisity, Abel | en_US |
dc.contributor.author | Piccinini, Filippo | en_US |
dc.contributor.author | Beleon, Attila | en_US |
dc.contributor.author | Balassa, Tamas | en_US |
dc.contributor.author | Varga, Istvan Gergely | en_US |
dc.contributor.author | Migh, Ede | en_US |
dc.contributor.author | Molnar, Csaba | en_US |
dc.contributor.author | Paavolainen, Lassi | en_US |
dc.contributor.author | Timonen, Sanna | en_US |
dc.contributor.author | Banerjee, Indranil | en_US |
dc.contributor.author | Ikonen, Elina | en_US |
dc.contributor.author | Yamauchi, Yohei | en_US |
dc.contributor.author | Ando, Istvan | en_US |
dc.contributor.author | Peltonen, Jaakko | en_US |
dc.contributor.author | Pietiäinen, Vilja | en_US |
dc.contributor.author | Honti, Viktor | en_US |
dc.contributor.author | Horvath, Peter | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.organization | Hungarian Academy of Sciences | en_US |
dc.contributor.organization | IRCCS Istituto scientifico romagnolo per lo studio e la cura dei tumori - Meldola | en_US |
dc.contributor.organization | University of Helsinki | en_US |
dc.contributor.organization | Indian Institute of Science Education and Research Mohali | en_US |
dc.contributor.organization | University of Bristol | en_US |
dc.date.accessioned | 2021-06-02T06:15:06Z | |
dc.date.available | 2021-06-02T06:15:06Z | |
dc.date.issued | 2021-12 | en_US |
dc.description | Funding Information: The authors thank Antti Lehmussola and Pekka Ruusuvuori (Tampere University of Technology, Finland) for the information provided about the SIMCEP software; Samuli Ripatti and Ida Surakka (FIMM, University of Helsinki, Finland) for their valuable comments on our experiments related to the genes associated with dyslipidemia; Anna Uro (Faculty of Medicine, University of Helsinki) for providing expertise in the biochemical quantification of lipid levels; Mariliina Arjama (FIMM, University of Helsinki, Finland) for technical expertise in cell culture; the FIMM High Throughput Biomedicine Unit for providing access to high throughput robotics and siRNA library and the FIMM High Content Imaging and Analysis unit for HC-imaging (HiLIFE, University of Helsinki and Biocenter Finland); Olli Kallioniemi (FIMM, University of Helsinki, Finland) for support in HC-imaging capabilities and funding; Gabriella Tick and Máté Görbe (BRC, Szeged, Hungary) for their help with the software documentation; the Finnish Grid and Cloud Infrastructure (urn:nbn:fi:research-infras-2016072533) for computational resources; Dóra Bokor (BRC, Szeged, Hungary) for proofreading the manuscript. A.Sz., B.T., A.B., E.M., Cs.M. and P.H. acknowledge support from the Hungarian National Brain Research Program (MTA-SE-NAP B-BIOMAG), from the LENDULET-BIOMAG Grant (2018-342), from the European Regional Development Funds (GINOP-2.3.2-15-2016-00006, GINOP-2.3.2-15-2016-00026, GINOP-2.3.2-15-2016-00037), from the H2020 (ERAPERMED-COMPASS, DiscovAIR) and from the Chan Zuckerberg Initiative (Deep Visual Proteomics). A.Sz. and E.I. acknowledges support from University of Helsinki (Centre of Excellence matching funds) and Academy of Finland (project 324929). V.P., L.P. and P.H. acknowledge support from the Finnish TEKES FiDiPro Fellow Grant 40294/13 and FIMM High Content Imaging and Analysis Unit (FIMM-HCA; HiLIFE-HELMI) and Biocenter Finland, Finnish Cancer Society, Juselius Foundation, Academy of Finland Centre of Excellence in Translational Cancer Biology, Kymenlaakso and Finnish Cultural Foundation. V.P. acknowledges University of Helsinki post-doctoral research project grant. F.P. acknowledges support from the Union for International Cancer Control (UICC) for a UICC Yamagiwa-Yoshida (YY) Memorial International Cancer Study Grant (ref: UICC-YY/678329). V.H. and I.A. acknowledge the Hungarian National Research Fund (OTKA NKFI‐2 NN118207). V.H. acknowledges support from the National Research, Development and Innovation Office (OTKA K-131484). L.P. and J.P. acknowledge support from the Academy of Finland, decision numbers 295694, 313748, 327352 and 310552. Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved. | |
dc.description.abstract | Biological processes are inherently continuous, and the chance of phenotypic discovery is significantly restricted by discretising them. Using multi-parametric active regression we introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phenotypic supervised machine learning, to describe and explore biological data in a continuous manner. First, we compare traditional classification with regression in a simulated experimental setup. Second, we use our framework to identify genes involved in regulating triglyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to demonstrate that the proposed methodology is capable of modelling complex processes at infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster has continuous characteristics. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 9 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Szkalisity, A, Piccinini, F, Beleon, A, Balassa, T, Varga, I G, Migh, E, Molnar, C, Paavolainen, L, Timonen, S, Banerjee, I, Ikonen, E, Yamauchi, Y, Ando, I, Peltonen, J, Pietiäinen, V, Honti, V & Horvath, P 2021, ' Regression plane concept for analysing continuous cellular processes with machine learning ', Nature Communications, vol. 12, no. 1, 2532 . https://doi.org/10.1038/s41467-021-22866-x | en |
dc.identifier.doi | 10.1038/s41467-021-22866-x | en_US |
dc.identifier.issn | 2041-1723 | |
dc.identifier.other | PURE UUID: 3f52036d-3a0e-4536-b101-89182b4f02a9 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/3f52036d-3a0e-4536-b101-89182b4f02a9 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85105357600&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/63281966/Regression_plane_concept.s41467_021_22866_x.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/107893 | |
dc.identifier.urn | URN:NBN:fi:aalto-202106027146 | |
dc.language.iso | en | en |
dc.publisher | Nature Publishing Group | |
dc.relation.ispartofseries | Nature Communications | en |
dc.relation.ispartofseries | Volume 12, issue 1 | en |
dc.rights | openAccess | en |
dc.title | Regression plane concept for analysing continuous cellular processes with machine learning | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |