Revealing hidden quantum correlations in an electromechanical measurement

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2018-12-14

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Physical Review Letters, Volume 121, issue 24

Abstract

Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement backaction, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is continuously monitored via an electromagnetic cavity, as in a cavity optomechanical measurement, the backaction is manifest by the shot noise of incoming photons that becomes imprinted onto the motion of the oscillator. Following the photons leaving the cavity, the correlations appear as squeezing of quantum noise in the emitted field. Here we observe such “ponderomotive” squeezing in the microwave domain using an electromechanical device made out of a superconducting resonator and a drumhead mechanical oscillator. Under a strong measurement, the emitted field develops complex-valued quantum correlations, which in general are not completely accessible by standard homodyne measurements. We recover these hidden correlations, using a phase-sensitive measurement scheme employing two local oscillators. The utilization of hidden correlations presents a step forward in the detection of weak forces, as it allows us to fully utilize the quantum noise reduction under the conditions of strong force sensitivity.

Description

| openaire: EC/H2020/615755/EU//CAVITYQPD

Keywords

Other note

Citation

Ockeloen-Korppi, C, Damskägg, E, Paraoanu, G-S, Massel, F & Sillanpää, M 2018, ' Revealing hidden quantum correlations in an electromechanical measurement ', Physical Review Letters, vol. 121, no. 24, 243601 . < https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.243601 >