Modelling atomic layer deposition overcoating formation on a porous heterogeneous catalyst

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHeikkinen, Nikoen_US
dc.contributor.authorLehtonen, Juhaen_US
dc.contributor.authorKeskiväli, Lauraen_US
dc.contributor.authorYim, Jihongen_US
dc.contributor.authorShetty, Shwethaen_US
dc.contributor.authorGe, Yanlingen_US
dc.contributor.authorReinikainen, Mattien_US
dc.contributor.authorPutkonen, Mattien_US
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineeringen
dc.contributor.groupauthorCatalysisen
dc.contributor.organizationVTT Technical Research Centre of Finlanden_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2022-09-21T06:05:15Z
dc.date.available2022-09-21T06:05:15Z
dc.date.issued2022-09-14en_US
dc.descriptionPublisher Copyright: © 2022 The Royal Society of Chemistry.
dc.description.abstractAtomic layer deposition (ALD) was used to deposit a protective overcoating (Al2O3) on an industrially relevant Co-based Fischer-Tropsch catalyst. A trimethylaluminium/water (TMA/H2O) ALD process was used to prepare ∼0.7-2.2 nm overcoatings on an incipient wetness impregnated Co-Pt/TiO2 catalyst. A diffusion-reaction differential equation model was used to predict precursor transport and the resulting deposited overcoating surface coverage inside a catalyst particle. The model was validated against transmission electron (TEM) and scanning electron (SEM) microscopy studies. The prepared model utilised catalyst physical properties and ALD process parameters to estimate achieved overcoating thickness for 20 and 30 deposition cycles (1.36 and 2.04 nm respectively). The TEM analysis supported these estimates, with 1.29 ± 0.16 and 2.15 ± 0.29 nm average layer thicknesses. In addition to layer thickness estimation, the model was used to predict overcoating penetration into the porous catalyst. The model estimated a penetration depth of ∼19 μm, and cross-sectional scanning electron microscopy supported the prediction with a deepest penetration of 15-18 μm. The model successfully estimated the deepest penetration, however, the microscopy study showed penetration depth fluctuation between 0-18 μm, having an average of 9.6 μm.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHeikkinen, N, Lehtonen, J, Keskiväli, L, Yim, J, Shetty, S, Ge, Y, Reinikainen, M & Putkonen, M 2022, ' Modelling atomic layer deposition overcoating formation on a porous heterogeneous catalyst ', Physical Chemistry Chemical Physics, vol. 24, no. 34, pp. 20506-20516 . https://doi.org/10.1039/d2cp02491hen
dc.identifier.doi10.1039/d2cp02491hen_US
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.otherPURE UUID: 51c53688-7615-4c03-a099-78739de74735en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/51c53688-7615-4c03-a099-78739de74735en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85137004072&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/88243300/CHEM_Heikkinen_et_al_Modelling_atomic_layer_deposition_2022_PCCP.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116854
dc.identifier.urnURN:NBN:fi:aalto-202209215652
dc.language.isoenen
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesPhysical Chemistry Chemical Physicsen
dc.relation.ispartofseriesVolume 24, issue 34, pp. 20506-20516en
dc.rightsopenAccessen
dc.titleModelling atomic layer deposition overcoating formation on a porous heterogeneous catalysten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files