Adaptive HD-sEMG decomposition: towards robust real-time decoding of neural drive

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorYeung, Dennisen_US
dc.contributor.authorNegro, Francescoen_US
dc.contributor.authorVujaklija, Ivanen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorBionic and Rehabilitation Engineeringen
dc.contributor.organizationUniversity of Bresciaen_US
dc.date.accessioned2024-04-03T07:08:53Z
dc.date.available2024-04-03T07:08:53Z
dc.date.issued2024-04-01en_US
dc.descriptionPublisher Copyright: © 2024 The Author(s). Published by IOP Publishing Ltd
dc.description.abstractObjective. Neural interfacing via decomposition of high-density surface electromyography (HD-sEMG) should be robust to signal non-stationarities incurred by changes in joint pose and contraction intensity. Approach. We present an adaptive real-time motor unit decoding algorithm and test it on HD-sEMG collected from the extensor carpi radialis brevis during isometric contractions over a range of wrist angles and contraction intensities. The performance of the algorithm was verified using high-confidence benchmark decompositions derived from concurrently recorded intramuscular electromyography. Main results. In trials where contraction conditions between the initialization and testing data differed, the adaptive decoding algorithm maintained significantly higher decoding accuracies when compared to static decoding methods. Significance. Using “gold standard” verification techniques, we demonstrate the limitations of filter re-use decoding methods and show the necessity of parameter adaptation to achieve robust neural decoding.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationYeung, D, Negro, F & Vujaklija, I 2024, 'Adaptive HD-sEMG decomposition: towards robust real-time decoding of neural drive', Journal of Neural Engineering, vol. 21, no. 2, 026012. https://doi.org/10.1088/1741-2552/ad33b0en
dc.identifier.doi10.1088/1741-2552/ad33b0en_US
dc.identifier.issn1741-2560
dc.identifier.issn1741-2552
dc.identifier.otherPURE UUID: 15209dec-b10d-4882-81ff-fafa2ab63ac0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/15209dec-b10d-4882-81ff-fafa2ab63ac0en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85188511954&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/142944905/Yeung_2024_J._Neural_Eng._21_026012.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127327
dc.identifier.urnURN:NBN:fi:aalto-202404032954
dc.language.isoenen
dc.publisherInstitute of Physics Publishing
dc.relation.ispartofseriesJournal of Neural Engineeringen
dc.relation.ispartofseriesVolume 21, issue 2en
dc.rightsopenAccessen
dc.subject.keyworddecompositionen_US
dc.subject.keywordelectromyographyen_US
dc.subject.keywordhuman-machine interfacingen_US
dc.subject.keywordmotor unitsen_US
dc.subject.keywordneural interfacingen_US
dc.titleAdaptive HD-sEMG decomposition: towards robust real-time decoding of neural driveen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files