Hydrogenic spin-valley states of the bromine donor in 2H-MoTe2
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2023-06-09
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
Series
Communications Physics, Volume 6, issue 1, pp. 1-11
Abstract
In semiconductors, the identification of doping atomic elements allowing to encode a qubit within spin states is of intense interest for quantum technologies. In transition metal dichalcogenides semiconductors, the strong spin-orbit coupling produces locked spin-valley states with expected long coherence time. Here we study the substitutional Bromine BrTe dopant in 2H-MoTe2. Electron spin resonance measurements show that this dopant carries a spin with long-lived nanoseconds coherence time. Using scanning tunneling spectroscopy, we find that the hydrogenic wavefunctions associated with the dopant levels have characteristics spatial modulations that result from their hybridization to the Q-valleys of the conduction band. From a Fourier analysis of the conductance maps, we find that the amplitude and phase of the Fourier components change with energy according to the different irreducible representations of the impurity-site point-group symmetry. These results demonstrate that a dopant can inherit the locked spin-valley properties of the semiconductor and so exhibit long spin-coherence time.Description
Funding Information: We acknowledge financial support from ANR MECHASPIN Grant No. ANR-17-CE24-0024-02 and ANR FRONTAL Grant No. ANR-19-CE09-0017-02. We acknowledge support from the CNRS research infrastructure RENARD (FR 3443) for EPR facilities. The crystal growth was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Spin” No. 122021000036-3). The transport experiments at ESPCI have been supported by a Sesame Grant from the Région Ile de France Council. The Scanning Tunneling Spectroscopy at 77K partially supported by RSF (No. 21-72-30026 https://rscf.ru/en/project/21-72-30026/ ). Sample preparation for UHV STM studies was supported by the Ministry of Science and Higher Education of the Russian Federation (No. FSMG-2023-0014) and Federal Academic Leadership Program Priority 2030 (NUST MISIS Grant No. K2-2022-029). The computational support from the Technical University of Dresden computing cluster (TAURUS), from High Performance Computing Center (HLRS) in Stuttgart, Germany is gratefully appreciated. A.V.K. acknowledges funding from the German Research Foundation (DFG), Project KR 4866/9-1. We acknowledge useful discussions regarding samples with Dr. B. Fauqué. We thank Pr. H. Dery, Dr. CM. Gilardoni and Pr. M. Guimaraes for careful reading of the manuscript and suggestions.
Keywords
Other note
Citation
Sheina, V, Lang, G, Stolyarov, V, Marchenkov, V, Naumov, S, Perevalova, A, Girard, J C, Rodary, G, David, C, Sop, L R, Pierucci, D, Ouerghi, A, Cantin, J L, Leridon, B, Ghorbani-Asl, M, Krasheninnikov, A V & Aubin, H 2023, ' Hydrogenic spin-valley states of the bromine donor in 2H-MoTe 2 ', Communications Physics, vol. 6, no. 1, 135, pp. 1-11 . https://doi.org/10.1038/s42005-023-01244-7