Learning Event-triggered Algorithms for Networked Control Systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorBaumann , Dominik
dc.contributor.authorGuo, Qingyun
dc.contributor.schoolSähkötekniikan korkeakoulufi
dc.contributor.supervisorBaumann , Dominik
dc.date.accessioned2024-08-25T17:02:36Z
dc.date.available2024-08-25T17:02:36Z
dc.date.issued2024-08-19
dc.description.abstractIncorporating reinforcement learning into event-triggered communication and control policies can achieve impressive control performance and considerable communication savings. Recent approaches rely on centralized training and decentralized execution paradigm to offset the missing global information, which may not always be accessible in the real world. Meanwhile, existing methods for multi-agent systems still face scalability and classical communication problems. To address these issues, we introduce a decentralized reinforcement learning algorithm with selective parameter sharing to learn hybrid action spaces in distributed multi-agent systems. Furthermore, we propose a dynamic penalty design algorithm to balance the control and communication policies.en
dc.format.extent54+2
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/130096
dc.identifier.urnURN:NBN:fi:aalto-202408255657
dc.language.isoenen
dc.locationP1fi
dc.programmeAEE - Master’s Programme in Automation and Electrical Engineering (TS2013)fi
dc.programme.majorControl, Robotics and Autonomous Systemsfi
dc.programme.mcodeELEC3025fi
dc.subject.keywordeent-triggered controlen
dc.subject.keywordmulti-agent systemen
dc.subject.keywordreinforcement learningen
dc.subject.keywordreward shapingen
dc.titleLearning Event-triggered Algorithms for Networked Control Systemsen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
local.aalto.electroniconlyyes
local.aalto.openaccessno

Files