Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMS

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGabrelian, Gabrelianen_US
dc.contributor.authorRoss, Glennen_US
dc.contributor.authorBespalova, Kristinaen_US
dc.contributor.authorPaulasto-Kröckel, Mervien_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorElectronics Integration and Reliabilityen
dc.date.accessioned2022-12-07T07:22:33Z
dc.date.available2022-12-07T07:22:33Z
dc.date.issued2022-12en_US
dc.description.abstractDevices based on piezoelectric actuation are some of the most promising among the microelectromechanical systems (MEMS). Commonly, piezoelectric materials, such as aluminum nitride (AlN), are utilized to perform out-of-the-plane motion due to a clear and simple fabrication process. However, in-plane actuation is essential for inertial sensors, such as gyroscopes, where actuation and sensing directions are strongly perpendicular. Moreover, in-plane actuation and sensing can also find applications beyond inertial sensors. This paper presents the finite-element-modeling (FEM) of the MEMS gyroscope with the AlN thin films on vertical sidewalls that demonstrate in-plane actuation and unleash the full potential of piezoelectric AlN MEMS devices. Current work focuses on inertial sensing with the half-fork MEMS gyroscope’s FEM simulation. This device has a significant advantage in scaling, while its output is in a competitive range among existing commercial angular rate sensors. The FEM simulations in COMSOL Multiphysics (COMSOL) allow to measure the angular rate sensitivity and perform further design optimization. Ultimately, this research shows the potential of the AlN sidewall structures in MEMS gyroscopes by optimizing the angular rate sensitivity in the range of [-64.64] degrees per second (dps) with the peak value of 1 mV/dps.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGabrelian, G, Ross, G, Bespalova, K & Paulasto-Kröckel, M 2022, ' Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMS ', Materials Today Communications, vol. 33, 104522 . https://doi.org/10.1016/j.mtcomm.2022.104522en
dc.identifier.doi10.1016/j.mtcomm.2022.104522en_US
dc.identifier.issn2352-4928
dc.identifier.otherPURE UUID: 9938cbd9-60b8-4d8d-b478-cbd37c1ffcc0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9938cbd9-60b8-4d8d-b478-cbd37c1ffcc0en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/90942144/1_s2.0_S2352492822013630_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118048
dc.identifier.urnURN:NBN:fi:aalto-202212076793
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesMaterials Today Communicationsen
dc.relation.ispartofseriesVolume 33en
dc.rightsopenAccessen
dc.subject.keywordMemsen_US
dc.subject.keywordGyroscopeen_US
dc.subject.keywordAngular rate sensitivityen_US
dc.subject.keywordFinite element modelingen_US
dc.subject.keywordCOMSOLen_US
dc.subject.keywordAluminum nitrideen_US
dc.titleUnlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMSen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files