Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor
Loading...
Access rights
© 2012 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
URL
Journal Title
Journal ISSN
Volume Title
School of Science |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2012
Major/Subject
Mcode
Degree programme
Language
en
Pages
496546/1-7
Series
Journal of Sensors, Volume 2012
Abstract
Single-walled carbon nanotube network field effect transistors were fabricated and studied as humidity sensors. Sensing responses were altered by changing the gate voltage. At the open channel state (negative gate voltage), humidity pulse resulted in the decrease of the source-drain current, and, vice versa, the increase in the source-drain current was observed at the positive gate voltage. This effect was explained by the electron-donating nature of water molecules. The operation speed and signal intensity was found to be dependent on the gate voltage polarity. The positive or negative change in current with humidity pulse at zero-gate voltage was found to depend on the previous state of the gate electrode (positive or negative voltage, respectively). Those characteristics were explained by the charge traps in the gate dielectric altering the effective gate voltage, which influenced the operation of field effect transistor.Description
Keywords
humidity sensors, carbon nanotubes, FETs
Other note
Citation
Mudimela, Prasantha R. & Grigoras, Kestutis & Anoshkin, Ilya V. & Varpula, Aapo & Ermolov, Vladimir & Anisimov, Anton S. & Nasibulin, Albert G. & Novikov, Sergey & Kauppinen, Esko I. 2012. Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor. Journal of Sensors. Volume 2012. 496546/1-7. ISSN 1687-725X (printed). DOI: 10.1155/2012/496546