Nonnegative Structured Kruskal Tensor Regression
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Wang, Xinjue | en_US |
dc.contributor.author | Ollila, Esa | en_US |
dc.contributor.author | Vorobyov, Sergiy A. | en_US |
dc.contributor.department | Department of Information and Communications Engineering | en |
dc.contributor.groupauthor | Esa Ollila Group | en |
dc.contributor.groupauthor | Sergiy Vorobyov Group | en |
dc.date.accessioned | 2024-03-06T10:39:58Z | |
dc.date.available | 2024-03-06T10:39:58Z | |
dc.date.issued | 2023 | en_US |
dc.description | Publisher Copyright: © 2023 IEEE. | |
dc.description.abstract | Many contemporary data analysis problems use tensors (multidimensional arrays) as covariates. For example, regression or classification tasks may need to be performed on a set of image covariates sampled from diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), or hyperspectral imaging (HSI). By en-forcing a low-rank constraint on the parameter tensor, tensor regression models effectively leverage the temporal and spatial structure of tensor covariates. In this paper, we study Kruskal tensor regression with sparsity and smoothness inducing regularization and non-negativity constraints. We solve the corresponding penalized nonnegative Kruskal tensor regression (KTR) problem using an efficient block-wise alternating minimization method. The efficiency of the proposed approach is illustrated via simulations. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 5 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Wang, X, Ollila, E & Vorobyov, S A 2023, Nonnegative Structured Kruskal Tensor Regression. in 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023. 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023, IEEE, pp. 441-445, IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Herradura, Costa Rica, 10/12/2023. https://doi.org/10.1109/CAMSAP58249.2023.10403474 | en |
dc.identifier.doi | 10.1109/CAMSAP58249.2023.10403474 | en_US |
dc.identifier.isbn | 979-8-3503-4452-3 | |
dc.identifier.other | PURE UUID: 9f8acb8e-c874-456a-a995-37dfbd2773f7 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/9f8acb8e-c874-456a-a995-37dfbd2773f7 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85185007454&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/140270465/CAMSAP23_Nonnegative_Structured_Kruskal_Tensor_Regression.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/126936 | |
dc.identifier.urn | URN:NBN:fi:aalto-202403062571 | |
dc.language.iso | en | en |
dc.relation.ispartof | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing | en |
dc.relation.ispartofseries | 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023 | en |
dc.relation.ispartofseries | pp. 441-445 | en |
dc.rights | openAccess | en |
dc.subject.keyword | fused LASSO | en_US |
dc.subject.keyword | Kruskal tensor | en_US |
dc.subject.keyword | PARAFAC | en_US |
dc.subject.keyword | Sparsity | en_US |
dc.subject.keyword | tensor regression | en_US |
dc.title | Nonnegative Structured Kruskal Tensor Regression | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |