Nonnegative Structured Kruskal Tensor Regression

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorWang, Xinjueen_US
dc.contributor.authorOllila, Esaen_US
dc.contributor.authorVorobyov, Sergiy A.en_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorEsa Ollila Groupen
dc.contributor.groupauthorSergiy Vorobyov Groupen
dc.date.accessioned2024-03-06T10:39:58Z
dc.date.available2024-03-06T10:39:58Z
dc.date.issued2023en_US
dc.descriptionPublisher Copyright: © 2023 IEEE.
dc.description.abstractMany contemporary data analysis problems use tensors (multidimensional arrays) as covariates. For example, regression or classification tasks may need to be performed on a set of image covariates sampled from diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), or hyperspectral imaging (HSI). By en-forcing a low-rank constraint on the parameter tensor, tensor regression models effectively leverage the temporal and spatial structure of tensor covariates. In this paper, we study Kruskal tensor regression with sparsity and smoothness inducing regularization and non-negativity constraints. We solve the corresponding penalized nonnegative Kruskal tensor regression (KTR) problem using an efficient block-wise alternating minimization method. The efficiency of the proposed approach is illustrated via simulations.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationWang, X, Ollila, E & Vorobyov, S A 2023, Nonnegative Structured Kruskal Tensor Regression. in 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023. 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023, IEEE, pp. 441-445, IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Herradura, Costa Rica, 10/12/2023. https://doi.org/10.1109/CAMSAP58249.2023.10403474en
dc.identifier.doi10.1109/CAMSAP58249.2023.10403474en_US
dc.identifier.isbn979-8-3503-4452-3
dc.identifier.otherPURE UUID: 9f8acb8e-c874-456a-a995-37dfbd2773f7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9f8acb8e-c874-456a-a995-37dfbd2773f7en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85185007454&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/140270465/CAMSAP23_Nonnegative_Structured_Kruskal_Tensor_Regression.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/126936
dc.identifier.urnURN:NBN:fi:aalto-202403062571
dc.language.isoenen
dc.relation.ispartofIEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processingen
dc.relation.ispartofseries2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023en
dc.relation.ispartofseriespp. 441-445en
dc.rightsopenAccessen
dc.subject.keywordfused LASSOen_US
dc.subject.keywordKruskal tensoren_US
dc.subject.keywordPARAFACen_US
dc.subject.keywordSparsityen_US
dc.subject.keywordtensor regressionen_US
dc.titleNonnegative Structured Kruskal Tensor Regressionen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files