The lot size problem and the learning curve : A review of mathematical modeling (1950’s -2020)

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJaber, M. Y.en_US
dc.contributor.authorPeltokorpi, J.en_US
dc.contributor.authorSmunt, T. L.en_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorAdvanced Manufacturing and Materialsen
dc.contributor.organizationRyerson Universityen_US
dc.contributor.organizationUniversity of Wisconsin-Milwaukeeen_US
dc.date.accessioned2023-03-07T13:29:40Z
dc.date.available2023-03-07T13:29:40Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2024-02-09en_US
dc.date.issued2022-05en_US
dc.descriptionFunding Information: The first author thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support. The authors thank the anonymous reviewers for their positive feedback and valuable comments. Publisher Copyright: © 2022
dc.description.abstractThe economic order/production quantity (EOQ/EPQ) model is the most celebrated and the first scientific treatment of inventory management. It has been a fundamental topic covered in all production and operations management textbooks and the edifice on which complex inventory and logistics models have been built. It has been extended in many ways to make it more representative of real situations and settings. One of these extensions, which is the focus of the paper, is learning in production, where inventory builds in a convex rather than a linear form. Starting from the seminal work of Keachie & Fontana (Management Science, 13(2), B-102, 1966), this paper reviews the mathematics of those papers that stemmed from that work in an attempt to provide almost a comprehensive but rather concise presentation of more than 50 years of mathematical modeling. It also provides numerical examples to illustrate the expected behavior when learning occurs in activities other than production (setups and quality). It concludes with some insights and suggestions for future research directions for those who continue to be interested in the topic.en
dc.description.versionPeer revieweden
dc.format.extent28
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJaber, M Y, Peltokorpi, J & Smunt, T L 2022, 'The lot size problem and the learning curve : A review of mathematical modeling (1950’s -2020)', Applied Mathematical Modelling, vol. 105, pp. 832-859. https://doi.org/10.1016/j.apm.2022.01.007en
dc.identifier.doi10.1016/j.apm.2022.01.007en_US
dc.identifier.issn0307-904X
dc.identifier.issn1872-8480
dc.identifier.otherPURE UUID: 3902b17f-a59f-4353-847b-42be67f218e2en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/3902b17f-a59f-4353-847b-42be67f218e2en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85124203058&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/102376912/ENG_Jaber_et_al_The_lot_size_problem_Applied_Mathematical_Modelling.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119994
dc.identifier.urnURN:NBN:fi:aalto-202303072322
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesApplied Mathematical Modellingen
dc.relation.ispartofseriesVolume 105, pp. 832-859en
dc.rightsopenAccessen
dc.subject.keywordeconomic order/production quantity (EOQ/EPQ)en_US
dc.subject.keywordforgettingen_US
dc.subject.keywordinventory managementen_US
dc.subject.keywordLearning curvesen_US
dc.subject.keywordlot sizingen_US
dc.titleThe lot size problem and the learning curve : A review of mathematical modeling (1950’s -2020)en
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files