Improved Hölder regularity for strongly elliptic PDEs

No Thumbnail Available

Access rights

openAccess
acceptedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-08

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Journal des Mathematiques Pures et Appliquees, Volume 140, pp. 230-258

Abstract

We establish surprising improved Schauder regularity properties for solutions to the Leray-Lions divergence type equation in the plane. The results are achieved by studying the nonlinear Beltrami equation and making use of special new relations between these two equations. In particular, we show that solutions to an autonomous Beltrami equation enjoy a quantitative improved degree of Hölder regularity, higher than what is given by the classical exponent 1/K.

Description

Keywords

Beltrami equation, Elliptic equations, Hölder regularity, Quasiconformal mappings

Other note

Citation

Astala, K, Clop, A, Faraco, D, Jääskeläinen, J & Koski, A 2020, ' Improved Hölder regularity for strongly elliptic PDEs ', Journal des Mathematiques Pures et Appliquees, vol. 140, pp. 230-258 . https://doi.org/10.1016/j.matpur.2020.06.005