Chemical reaction enhanced graph learning for molecule representation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Anchenen_US
dc.contributor.authorCasiraghi, Elenaen_US
dc.contributor.authorRousu, Juhoen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Large-scale Computing and Data Analysis (LSCA) - Research areaen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorComputer Science - Computational Life Sciences (CSLife) - Research areaen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProfessorship Rousu Juhoen
dc.contributor.organizationAalto Universityen_US
dc.date.accessioned2024-10-23T06:07:19Z
dc.date.available2024-10-23T06:07:19Z
dc.date.issued2024-10-01en_US
dc.descriptionPublisher Copyright: © The Author(s) 2024. Published by Oxford University Press.
dc.description.abstractMOTIVATION: Molecular representation learning (MRL) models molecules with low-dimensional vectors to support biological and chemical applications. Current methods primarily rely on intrinsic molecular information to learn molecular representations, but they often overlook effectively integrating domain knowledge into MRL. RESULTS: In this article, we develop a reaction-enhanced graph learning (RXGL) framework for MRL, utilizing chemical reactions as domain knowledge. RXGL introduces dual graph learning modules to model molecule representation. One module employs graph convolutions on molecular graphs to capture molecule structures. The other module constructs a reaction-aware graph from chemical reactions and designs a novel graph attention network on this graph to integrate reaction-level relations into molecular modeling. To refine molecule representations, we design a reaction-based relation learning task, which considers the relations between the reactant and product sides in reactions. In addition, we introduce a cross-view contrastive task to strengthen the cooperative associations between molecular and reaction-aware graph learning. Experiment results show that our RXGL achieves strong performance in various downstream tasks, including product prediction, reaction classification, and molecular property prediction. AVAILABILITY AND IMPLEMENTATION: The code is publicly available at https://github.com/coder-ACAC/RLM.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, A, Casiraghi, E & Rousu, J 2024, 'Chemical reaction enhanced graph learning for molecule representation', Bioinformatics (Oxford, England), vol. 40, no. 10, btae558, pp. 1-9. https://doi.org/10.1093/bioinformatics/btae558en
dc.identifier.doi10.1093/bioinformatics/btae558en_US
dc.identifier.issn1367-4803
dc.identifier.issn1367-4811
dc.identifier.otherPURE UUID: 8715ec28-775b-4ee2-9f66-9f7fdcf68228en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8715ec28-775b-4ee2-9f66-9f7fdcf68228en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85206121750&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/161836374/Chemical_reaction_enhanced_graph_learning_for_molecule_representation.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131332
dc.identifier.urnURN:NBN:fi:aalto-202410236852
dc.language.isoenen
dc.publisherOxford University Press
dc.relation.ispartofseriesBioinformatics (Oxford, England)en
dc.relation.ispartofseriesVolume 40, issue 10, pp. 1-9en
dc.rightsopenAccessen
dc.titleChemical reaction enhanced graph learning for molecule representationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files