Secure 5G Positioning with Truth Discovery, Attack Detection and Tracing

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Yilinen_US
dc.contributor.authorLiu, Shushuen_US
dc.contributor.authorYan, Zhengen_US
dc.contributor.authorDeng, Robert H.en_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorNetwork Security and Trusten
dc.contributor.organizationXidian Universityen_US
dc.contributor.organizationSingapore Management Universityen_US
dc.date.accessioned2021-09-02T08:46:26Z
dc.date.available2021-09-02T08:46:26Z
dc.date.issued2021-06-14en_US
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractThe fifth-generation (5G) cellular network is expected to provide sub-meter positioning accuracy without draining the battery of user equipment. As a solution, ultra-dense network (UDN) deployment and network-based positioning were proposed. However, the openness of UDN and the vulnerability of network devices (e.g., access nodes) make it easy for attackers to poison such a positioning system. However, no existing work explores how to overcome this issue. This paper concentrates on jamming and collusion attacks in the network based positioning system. Specifically, we design a novel scheme that contains three functional modules to erase the influence of these attacks. A truth discovery module applies a clustering-based method aiming to generate the most approximate position value and find out suspicious signals. Based on neural network models, we further develop an attack detection module and an attack tracing module to perceive attacked user equipment and locate malicious or attacked access nodes. Through simulation, we conduct extensive experiments to illustrate the effectiveness of our scheme. The result shows high detection and tracing accuracy with very simple neural network models, which also implies the potential of our proposed scheme in practical deployment.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, Y, Liu, S, Yan, Z & Deng, R H 2021, ' Secure 5G Positioning with Truth Discovery, Attack Detection and Tracing ', IEEE Internet of Things Journal . https://doi.org/10.1109/JIOT.2021.3088852en
dc.identifier.doi10.1109/JIOT.2021.3088852en_US
dc.identifier.issn2327-4662
dc.identifier.otherPURE UUID: 8a6786a9-a726-44ce-8ed2-6c5221cedafaen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8a6786a9-a726-44ce-8ed2-6c5221cedafaen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85112220926&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/66880683/ELEC_Li_etal_Secure_5G_Positioning_IEEE_JIOT_2021_acceptedauthormanuscript.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/109600
dc.identifier.urnURN:NBN:fi:aalto-202109028832
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Internet of Things Journalen
dc.rightsopenAccessen
dc.subject.keyword5G mobile communicationen_US
dc.subject.keyword5G positioningen_US
dc.subject.keywordattack detection and tracing.en_US
dc.subject.keywordclusteringen_US
dc.subject.keywordFeature extractionen_US
dc.subject.keywordGlobal Positioning Systemen_US
dc.subject.keywordJammingen_US
dc.subject.keywordLocation awarenessen_US
dc.subject.keywordneural networken_US
dc.subject.keywordNeural networksen_US
dc.subject.keywordPeer-to-peer computingen_US
dc.subject.keywordtruth discoveryen_US
dc.titleSecure 5G Positioning with Truth Discovery, Attack Detection and Tracingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files