Analytical solution with validity analysis for an elliptical void and a rigid inclusion under uniform or nonuniform anti-plane loading

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorShahzad, S.
dc.contributor.authorNiiranen, J.
dc.contributor.departmentDepartment of Civil Engineering
dc.date.accessioned2018-08-23T10:58:55Z
dc.date.available2018-08-23T10:58:55Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2020-08-01
dc.date.issued2018-10-01
dc.description.abstractAn elliptical inclusion (covering both void and rigid inclusions) embedded in an infinite and finite elastic plane subject to uniform or nonuniform (m-th order polynomial) anti-plane loading conditions is analyzed. An analytical solution in terms of the stress field for an infinite plane is developed through the method of analytic function and conformal mapping. Closed-form complex potentials and analytical expressions for Stress Concentration Factors (SCFs) are obtained. The results show that (i.) the SCF value decreases with an increasing loading order, so that the influence of the non-uniformity of the anti-plane loads on the SCF is revealed to be beneficial from the failure point of view; (ii.) decrease in the SCF value for an infinite plane is monotonic, which does not hold true for a finite plane. The results for an infinite plane are confirmed and extended for finite planes by exploiting the well-known heat–stress analogy and the finite element method. It is worth mentioning that the comparison betweenthe analytical solution for an infinite plane and the numerical solution for finite plane is provided, showing that the analytical solution of an infinite plane can be used as an accurate approximation to the case of a finite plane. Moreover, the proposed heat–stress analogy can be exploited to study the crack–inclusion interaction or multiply connected bodies. The computational efficiency of the proposed methodology makes it an attractive analysis tool for anti-plane problems with respect to the full scale three-dimensional analysis.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.extent62-72
dc.format.mimetypeapplication/pdf
dc.identifier.citationShahzad , S & Niiranen , J 2018 , ' Analytical solution with validity analysis for an elliptical void and a rigid inclusion under uniform or nonuniform anti-plane loading ' , Theoretical and Applied Fracture Mechanics , vol. 97 , pp. 62-72 . https://doi.org/10.1016/j.tafmec.2018.07.009en
dc.identifier.doi10.1016/j.tafmec.2018.07.009
dc.identifier.issn0167-8442
dc.identifier.issn1872-7638
dc.identifier.otherPURE UUID: cb714779-9a0a-43b3-a1c0-e773f2414a88
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/cb714779-9a0a-43b3-a1c0-e773f2414a88
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85050818902&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/27322823/ENG_Shahzad_et_al_Analytical_solution_with_validity_Theoretical_and_applied_fracture_mechanics.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/33592
dc.identifier.urnURN:NBN:fi:aalto-201808234724
dc.language.isoenen
dc.relation.ispartofseriesTHEORETICAL AND APPLIED FRACTURE MECHANICSen
dc.relation.ispartofseriesVolume 97en
dc.rightsopenAccessen
dc.subject.keywordAnti-plane elasticity
dc.subject.keywordComposites
dc.subject.keywordCrack
dc.subject.keywordHeat–stress analogy
dc.subject.keywordLaplace equation
dc.subject.keywordSCF
dc.subject.keywordSIF
dc.titleAnalytical solution with validity analysis for an elliptical void and a rigid inclusion under uniform or nonuniform anti-plane loadingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files