Predicting recognition between T cell receptors and epitopes with TCRGP

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJokinen, Emmien_US
dc.contributor.authorHuuhtanen, Janien_US
dc.contributor.authorMustjoki, Satuen_US
dc.contributor.authorHeinonen, Markusen_US
dc.contributor.authorLähdesmäki, Harrien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Lähdesmäki Harrien
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorComputer Science - Computational Life Sciences (CSLife) - Research areaen
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2021-04-28T06:30:32Z
dc.date.available2021-04-28T06:30:32Z
dc.date.issued2021-03-25en_US
dc.descriptionCopyright: This record is sourced from MEDLINE/PubMed, a database of the U.S. National Library of Medicine
dc.description.abstractAdaptive immune system uses T cell receptors (TCRs) to recognize pathogens and to consequently initiate immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individuals' immune status in different disorders. For this task, we have developed TCRGP, a novel Gaussian process method that predicts if TCRs recognize specified epitopes. TCRGP can utilize the amino acid sequences of the complementarity determining regions (CDRs) from TCRα and TCRβ chains and learn which CDRs are important in recognizing different epitopes. Our comprehensive evaluation with epitope-specific TCR sequencing data shows that TCRGP achieves on average higher prediction accuracy in terms of AUROC score than existing state-of-the-art methods in epitope-specificity predictions. We also propose a novel analysis approach for combined single-cell RNA and TCRαβ (scRNA+TCRαβ) sequencing data by quantifying epitope-specific TCRs with TCRGP and identify HBV-epitope specific T cells and their transcriptomic states in hepatocellular carcinoma patients.en
dc.description.versionPeer revieweden
dc.format.extent27
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJokinen, E, Huuhtanen, J, Mustjoki, S, Heinonen, M & Lähdesmäki, H 2021, ' Predicting recognition between T cell receptors and epitopes with TCRGP ', PLoS computational biology, vol. 17, no. 3, e1008814, pp. 1-27 . https://doi.org/10.1371/journal.pcbi.1008814en
dc.identifier.doi10.1371/journal.pcbi.1008814en_US
dc.identifier.issn1553-734X
dc.identifier.issn1553-7358
dc.identifier.otherPURE UUID: d4d620c0-f930-4d0b-b217-25a932c13b02en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d4d620c0-f930-4d0b-b217-25a932c13b02en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85104047337&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/62102215/Jokinen_Predicting_recognition.journal.pcbi.1008814_1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/107139
dc.identifier.urnURN:NBN:fi:aalto-202104286423
dc.language.isoenen
dc.publisherPublic Library of Science
dc.relation.ispartofseriesPLoS computational biologyen
dc.relation.ispartofseriesVolume 17, issue 3, pp. 1-27en
dc.rightsopenAccessen
dc.titlePredicting recognition between T cell receptors and epitopes with TCRGPen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files