Predicting recognition between T cell receptors and epitopes with TCRGP
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Jokinen, Emmi | en_US |
dc.contributor.author | Huuhtanen, Jani | en_US |
dc.contributor.author | Mustjoki, Satu | en_US |
dc.contributor.author | Heinonen, Markus | en_US |
dc.contributor.author | Lähdesmäki, Harri | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Lähdesmäki Harri | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
dc.contributor.groupauthor | Computer Science - Computational Life Sciences (CSLife) - Research area | en |
dc.contributor.organization | University of Helsinki | en_US |
dc.date.accessioned | 2021-04-28T06:30:32Z | |
dc.date.available | 2021-04-28T06:30:32Z | |
dc.date.issued | 2021-03-25 | en_US |
dc.description | Copyright: This record is sourced from MEDLINE/PubMed, a database of the U.S. National Library of Medicine | |
dc.description.abstract | Adaptive immune system uses T cell receptors (TCRs) to recognize pathogens and to consequently initiate immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individuals' immune status in different disorders. For this task, we have developed TCRGP, a novel Gaussian process method that predicts if TCRs recognize specified epitopes. TCRGP can utilize the amino acid sequences of the complementarity determining regions (CDRs) from TCRα and TCRβ chains and learn which CDRs are important in recognizing different epitopes. Our comprehensive evaluation with epitope-specific TCR sequencing data shows that TCRGP achieves on average higher prediction accuracy in terms of AUROC score than existing state-of-the-art methods in epitope-specificity predictions. We also propose a novel analysis approach for combined single-cell RNA and TCRαβ (scRNA+TCRαβ) sequencing data by quantifying epitope-specific TCRs with TCRGP and identify HBV-epitope specific T cells and their transcriptomic states in hepatocellular carcinoma patients. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 27 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Jokinen, E, Huuhtanen, J, Mustjoki, S, Heinonen, M & Lähdesmäki, H 2021, ' Predicting recognition between T cell receptors and epitopes with TCRGP ', PLoS computational biology, vol. 17, no. 3, e1008814, pp. 1-27 . https://doi.org/10.1371/journal.pcbi.1008814 | en |
dc.identifier.doi | 10.1371/journal.pcbi.1008814 | en_US |
dc.identifier.issn | 1553-734X | |
dc.identifier.issn | 1553-7358 | |
dc.identifier.other | PURE UUID: d4d620c0-f930-4d0b-b217-25a932c13b02 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/d4d620c0-f930-4d0b-b217-25a932c13b02 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85104047337&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/62102215/Jokinen_Predicting_recognition.journal.pcbi.1008814_1.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/107139 | |
dc.identifier.urn | URN:NBN:fi:aalto-202104286423 | |
dc.language.iso | en | en |
dc.publisher | Public Library of Science | |
dc.relation.ispartofseries | PLoS computational biology | en |
dc.relation.ispartofseries | Volume 17, issue 3, pp. 1-27 | en |
dc.rights | openAccess | en |
dc.title | Predicting recognition between T cell receptors and epitopes with TCRGP | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |