High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Rinkiö, Marcus | |
dc.contributor.author | Johansson, Andreas | |
dc.contributor.author | Zavodchikova, Marina Y. | |
dc.contributor.author | Toppari, J. Jussi | |
dc.contributor.author | Nasibulin, Albert G. | |
dc.contributor.author | Kauppinen, Esko I. | |
dc.contributor.author | Törmä, Päivi | |
dc.contributor.department | Teknillisen fysiikan laitos | fi |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.school | Perustieteiden korkeakoulu | fi |
dc.contributor.school | School of Science | en |
dc.date.accessioned | 2015-10-31T10:01:58Z | |
dc.date.available | 2015-10-31T10:01:58Z | |
dc.date.issued | 2008 | |
dc.description.abstract | Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO2 and TiO2 in a triple-layer configuration, we achieve to our knowledge the first CNT FETs with consistent and narrowly distributed memory effects in their transfer characteristics. The study includes 94 CNT FET samples, providing a good basis for statistics on the hysteresis seen in five different CNT-gate configurations. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 103019/1-16 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Rinkiö, Marcus & Johansson, Andreas & Zavodchikova, Marina Y. & Toppari, J. Jussi & Nasibulin, Albert G. & Kauppinen, Esko I. & Törmä, Päivi. 2008. High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics. Volume 10, Issue 10. 103019/1-16. ISSN 1367-2630 (printed). DOI: 10.1088/1367-2630/10/10/103019 | en |
dc.identifier.doi | 10.1088/1367-2630/10/10/103019 | |
dc.identifier.issn | 1367-2630 (printed) | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/18238 | |
dc.identifier.urn | URN:NBN:fi:aalto-201510304811 | |
dc.language.iso | en | en |
dc.publisher | IOP Publishing | en |
dc.relation.ispartofseries | New Journal of Physics | en |
dc.relation.ispartofseries | Volume 10, Issue 10 | |
dc.rights | © 2008 IOP Publishing and Deutsche Physikalische Gesellschaft. This is the accepted version of the following article: Rinkiö, Marcus & Johansson, Andreas & Zavodchikova, Marina Y. & Toppari, J. Jussi & Nasibulin, Albert G. & Kauppinen, Esko I. & Törmä, Päivi. 2008. High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics. Volume 10, Issue 10. 103019/1-16. ISSN 1367-2630 (printed). DOI: 10.1088/1367-2630/10/10/103019, which has been published in final form at iopscience.iop.org/1367-2630/10/10/103019. This work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/). | en |
dc.rights.holder | IOP Publishing | |
dc.subject.keyword | carbon nanotubes | en |
dc.subject.keyword | field-effect transistors | en |
dc.subject.keyword | CNT FETs | en |
dc.subject.keyword | hysteresis | en |
dc.subject.other | Physics | en |
dc.title | High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.dcmitype | text | en |
dc.type.version | Final published version | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- A1_rinkiö_marcus_2008.pdf
- Size:
- 1.64 MB
- Format:
- Adobe Portable Document Format