High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric
Loading...
Access rights
© 2008 IOP Publishing and Deutsche Physikalische Gesellschaft. This is the accepted version of the following article: Rinkiö, Marcus & Johansson, Andreas & Zavodchikova, Marina Y. & Toppari, J. Jussi & Nasibulin, Albert G. & Kauppinen, Esko I. & Törmä, Päivi. 2008. High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics. Volume 10, Issue 10. 103019/1-16. ISSN 1367-2630 (printed). DOI: 10.1088/1367-2630/10/10/103019, which has been published in final form at iopscience.iop.org/1367-2630/10/10/103019. This work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/).
Journal Title
Journal ISSN
Volume Title
School of Science |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2008
Major/Subject
Mcode
Degree programme
Language
en
Pages
103019/1-16
Series
New Journal of Physics, Volume 10, Issue 10
Abstract
Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO2 and TiO2 in a triple-layer configuration, we achieve to our knowledge the first CNT FETs with consistent and narrowly distributed memory effects in their transfer characteristics. The study includes 94 CNT FET samples, providing a good basis for statistics on the hysteresis seen in five different CNT-gate configurations.Description
Keywords
carbon nanotubes, field-effect transistors, CNT FETs, hysteresis
Other note
Citation
Rinkiö, Marcus & Johansson, Andreas & Zavodchikova, Marina Y. & Toppari, J. Jussi & Nasibulin, Albert G. & Kauppinen, Esko I. & Törmä, Päivi. 2008. High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics. Volume 10, Issue 10. 103019/1-16. ISSN 1367-2630 (printed). DOI: 10.1088/1367-2630/10/10/103019