Magnetic actuation of flexible microelectrode arrays for neural activity recordings

No Thumbnail Available

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2019-10-03

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Nano Letters

Abstract

Implantable microelectrodes that can be remotely actuated via external fields are promising tools to interface with biological systems at a high degree of precision. Here, we report the development of flexible magnetic microelectrodes (FMμEs) that can be remotely actuated by magnetic fields. The FMμEs consist of flexible microelectrodes integrated with dielectrically encapsulated FeNi (iron-nickel) alloy microactuators. Both magnetic torque- and force-driven actuation of the FMμEs have been demonstrated. Nano-platinum coated FMµEs have been applied for in vivo recordings of neural activities from peripheral nerves and cerebral cortex of mice. Moreover, owing to their ultra-small sizes and mechanical compliance with neural tissues, chronically implanted FMµEs elicited greatly reduced neuronal cell loss in mouse brain compared to conventional stiff probes. The FMµEs open up a variety of new opportunities for electrically interfacing with biological systems in a controlled and minimally-invasive manner.

Description

Keywords

Flexible microelectrode, magnetic actuation, nanoscale roughness, neural recording, inflammatory response

Other note

Citation

Gao , L , Wang , J , Guan , S , Du , M , Wu , K , Xu , K , Zou , L , Tian , H & Fang , Y 2019 , ' Magnetic actuation of flexible microelectrode arrays for neural activity recordings ' , Nano Letters , vol. 19 , no. 11 , pp. 8032-8039 . https://doi.org/10.1021/acs.nanolett.9b03232