Reaching the ultimate energy resolution of a quantum detector

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2020-12-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
6
1-6
Series
Nature Communications, Volume 11, issue 1
Abstract
Quantum calorimetry, the thermal measurement of quanta, is a method of choice for ultrasensitive radiation detection ranging from microwaves to gamma rays. The fundamental temperature fluctuations of the calorimeter, dictated by the coupling of it to the heat bath, set the ultimate lower bound of its energy resolution. Here we reach this limit of fundamental equilibrium fluctuations of temperature in a nanoscale electron calorimeter, exchanging energy with the phonon bath at very low temperatures. The approach allows noninvasive measurement of energy transport in superconducting quantum circuits in the microwave regime with high efficiency, opening the way, for instance, to observe quantum jumps, detecting their energy to tackle central questions in quantum thermodynamics.
Description
| openaire: EC/H2020/742559/EU//SQH | openaire: EC/H2020/766025/EU//QuESTech
Keywords
Citation
Karimi , B , Brange , F , Samuelsson , P & Pekola , J P 2020 , ' Reaching the ultimate energy resolution of a quantum detector ' , Nature Communications , vol. 11 , no. 1 , 367 , pp. 1-6 . https://doi.org/10.1038/s41467-019-14247-2