Electrochemical properties of nitrogen and oxygen doped reduced graphene oxide

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHartmann, Sean J.en_US
dc.contributor.authorIurchenkova, Anna A.en_US
dc.contributor.authorKallio, Tanjaen_US
dc.contributor.authorFedorovskaya, Ekaterina O.en_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorElectrochemical Energy Conversionen
dc.contributor.organizationNovosibirsk State Universityen_US
dc.date.accessioned2020-02-03T09:03:06Z
dc.date.available2020-02-03T09:03:06Z
dc.date.issued2020-01-01en_US
dc.description.abstractCarbon nanostructures are promising electrode materials for energy storage devices because of their unique physical and chemical properties. Modification of the surface improves the electrochemical properties of those materials because of the changes in morphology, diffusion properties, and inclusion of additional contributions to redox processes. Oxygen-containing functional groups and nitrogen doped into the carbon matrix significantly contribute to the electrochemical behavior of reduced graphite oxide (RGO). In this work, RGO was synthesized during hydrothermal treatment of graphite oxide with a hydrazine sulfate aqueous solution. Different amounts of hydrazine sulfate were used to synthesize RGO with different nitrogen contents in the structure, and the same synthesis conditions made it possible to obtain a material with a similar composition of oxygen-containing functional groups. The materials with different nitrogen concentrations and similar amounts of oxygen were compared as electrode materials for a supercapacitor and as a negative electrode material for a Li-ion battery. It was shown that the presence of oxygen-containing functional groups has the greatest influence on the behavior and efficiency of supercapacitor electrode materials, while nitrogen atoms embedded in the graphene lattice play the largest role in lithium intercalation.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHartmann, S J, Iurchenkova, A A, Kallio, T & Fedorovskaya, E O 2020, 'Electrochemical properties of nitrogen and oxygen doped reduced graphene oxide', Energies, vol. 13, no. 2, 312. https://doi.org/10.3390/en13020312en
dc.identifier.doi10.3390/en13020312en_US
dc.identifier.issn1996-1073
dc.identifier.otherPURE UUID: dadc5a9a-c131-4dba-af7a-87c2cf75232cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/dadc5a9a-c131-4dba-af7a-87c2cf75232cen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85077820021&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40624828/CHEM_Hartmann_et_al_Electrochemical_Properties_2020_energies.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42958
dc.identifier.urnURN:NBN:fi:aalto-202002032038
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesEnergiesen
dc.relation.ispartofseriesVolume 13, issue 2en
dc.rightsopenAccessen
dc.subject.keywordCyclic voltammetryen_US
dc.subject.keywordFourier-transform infrared spectroscopyen_US
dc.subject.keywordHydrothermal treatmenten_US
dc.subject.keywordLi-ion batteriesen_US
dc.subject.keywordOxygen-containing functional groupsen_US
dc.subject.keywordRaman spectroscopyen_US
dc.subject.keywordReduced graphene oxideen_US
dc.subject.keywordSupercapacitorsen_US
dc.subject.keywordX-ray photoelectron spectroscopyen_US
dc.titleElectrochemical properties of nitrogen and oxygen doped reduced graphene oxideen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files