A Genetic Algorithm for Generating Optimal Stock Investment Strategies
Loading...
URL
Journal Title
Journal ISSN
Volume Title
Perustieteiden korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2017-12-12
Department
Major/Subject
Systems and Operations Research
Mcode
SCI3055
Degree programme
Master’s Programme in Mathematics and Operations Research
Language
en
Pages
78 + 2
Series
Abstract
Investors including banks, insurance companies and private investors are in a constant need for new investment strategies and portfolio selection methods. In this work we study the developed models, forecasting methods and portfolio management approaches. The information is used to create a decision-making system, or investment strategy, to form stock investment portfolios. The decision-making system is optimized using a genetic algorithm to find profitable low risk investment strategies. The constructed system is tested by simulating its performance with a large set of real stock market and economic data. The tests reveal that the constructed system requires a large sample of stock market and economic data before it finds well performing investment strategies. The parameters of the decision-making system converge surprisingly fast and the available computing capacity turned out to be sufficient even when a large amount of data is used in the system calibration. The model seems to find logics that govern stock market behavior. With a sufficient large amount of data for the calibration, the decision-making model finds strategies that work with regard to profit and portfolio diversification. The recommended strategies worked also outside the sample data that was used for system parameter identification (calibration). This work was done at Unisolver Ltd.Investoijat kuten pankit, vakuutusyhtiöt ja yksityissijoittajat tarvitsevat jatkuvasti uusia investointistrategioita portfolioiden määrittämiseen. Tässä työssä tutkitaan aiemmin kehitettyjä sijoitusmalleja, ennustemenetelmiä ja sijoitussalkun hallinnassa yleisesti käytettyjä lähestymistapoja. Löydettyä tietoa hyödyntäen kehitetään uusi päätöksentekomenetelmä (investointistrategia), jolla määritetään sijoitussalkun sisältö kunakin ajanhetkenä. Päätöksentekomalli optimoidaan geneettisellä algoritmilla. Tavoitteena on löytää tuottavia ja pienen riskin investointistrategioita. Kehitetyn mallin toimintaa simuloidaan suurella määrällä todellista pörssi- ja talousaineistoa. Testausvaihe osoittaakin, että päätöksentekomallin optimoinnissa tarvitaan suuri testiaineisto toimivien strategioiden löytämiseksi. Rakennetun mallin parametrit konvergoivat optimointivaiheessa nopeasti. Käytettävissä oleva laskentateho osoittautui riittäväksi niissäkin tilanteissa, joissa toisten menetelmien laskenta laajan aineiston takia hidastuu. Malli vaikuttaa löytävän logiikkaa, joka ymmärtää pörssikurssien käyttäytymistä. Riittävän suurella testiaineistolla malli löytää strategioita, joilla saavutetaan hyvä tuotto ja pieni riski. Strategiat toimivat myös mallin kalibroinnissa käytetyn aineiston ulkopuolella, tuottaen hyviä sijoitussalkkuja. Työ tehtiin Unisolver Oy:ssä.Description
Supervisor
Ehtamo, HarriThesis advisor
Lehtola, AarnoKeywords
investment strategy, investment decision-making, genetic optimization, strategy optimization, big data analysis, quantitative investing