Multispectral canopy reflectance improves spatial distribution models of Amazonian understory species

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2020-01-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Ecography
Abstract
Species distribution models are required for the research and management of biodiversity in the hyperdiverse tropical forests, but reliable and ecologically relevant digital environmental data layers are not always available. We here assess the usefulness of multispectral canopy reflectance (Landsat) relative to climate data in modelling understory plant species distributions in tropical rainforests. We used a large dataset of quantitative fern and lycophyte species inventories across lowland Amazonia as the basis for species distribution modelling (SDM). As predictors, we used CHELSA climatic variables and canopy reflectance values from a recent basin-wide composite of Landsat TM/ETM+ images both separately and in combination. We also investigated how species accumulate over sites when environmental distances were expressed in terms of climatic or surface reflectance variables. When species accumulation curves were constructed such that differences in Landsat reflectance among the selected plots were maximised, species accumulated faster than when climatic differences were maximised or plots were selected in a random order. Sixty-nine species were sufficiently frequent for species distribution modelling. For most of them, adequate SDMs were obtained whether the models were based on CHELSA data only, Landsat data only or both combined. Model performance was not influenced by species’ prevalence or abundance. Adding Landsat-based environmental data layers overall improved the discriminatory capacity of SDMs compared to climate-only models, especially for soil specialist species. Our results show that canopy surface reflectance obtained by multispectral sensors can provide studies of tropical ecology, as exemplified by SDMs, much higher thematic (taxonomic) detail than is generally assumed. Furthermore, multispectral datasets complement the traditionally used climatic layers in analyses requiring information on environmental site conditions. We demonstrate the utility of freely available, global remote sensing datafor biogeographical studies that can aid conservation planning and biodiversity management.
Description
Keywords
Amazonia, CHELSA, ferns, Landsat, remote sensing, soils, species distribution modelling
Other note
Citation
doninck , J V , Jones , M M , Zuquim , G , Ruokolainen , K , Moulatlet , G M , Sirén , A , Cárdenas , G , Lehtonen , S & Tuomisto , H 2020 , ' Multispectral canopy reflectance improves spatial distribution models of Amazonian understory species ' , Ecography , vol. 43 , no. 1 , pp. 128-137 . https://doi.org/10.1111/ecog.04729