Programmable and Responsive Superhydrophobic Surfaces

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorFranssila, Sami, Prof., Aalto University, Finland
dc.contributor.authorAl-Azawi, Anas
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.labSoft Matter and Wettingen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorRas, Robin, Prof., Aalto University, Department of Applied Physics, Finland
dc.date.accessioned2021-02-17T10:00:10Z
dc.date.available2021-02-17T10:00:10Z
dc.date.defence2021-03-12
dc.date.issued2021
dc.descriptionDefnse is held on 12.3.2021 12:00 – 16:00 via remote technology (Zoom), https://aalto.zoom.us/j/61326769947
dc.description.abstractProgress in the field of superhydrophobic surfaces requires precise characterization techniques and synthesis of surfaces that exhibit robust non-wettability. In this thesis, microfabrication techniques are used to produce static as well as bioinspired responsive superhydrophobic structures. In addition, transverse droplet oscillations are implemented to accurately evaluate superhydrophobicity of micropillared surfaces. Variations in surface properties that influence the degree of superhydrophobicity were successfully probed by relating friction and viscous dissipation of dynamic droplets to pattern density and chemical coating. Additionally, controlling the normal force exerted on the water-based ferrofluid droplet allows the measurement of impalement pressure necessary to induce wetting transition for a droplet in motion. A new fabrication process was introduced for rapid prototyping of cilia-inspired magnetic micropillars. The fabricated array of sub-10 µm diameter pillars are based on polydimethylsiloxane (PDMS) loaded with carbonyl iron particles (CIP). Lubricating in silicone oil allowed controlled droplet motion at the sub-mm scale facilitated by fast actuation and superhydrophobicity of the oil infused PDMS magnetic micropillars. Lack of mechanical stability due to flexibility of the high aspect ratio PDMS micropillars restricted the application of the array to liquid media only. Thiol-ene based magnetic micropillar arrays were introduced to address the stability issue of the high-aspect ratio micropillars. The remarkable properties of thiol-ene including tunability of surface and mechanical properties allowed topography modification of the magnetic micropillars using photo-induced thiol-ene click coupling. Decorating the surface of the high aspect ratio thiol-ene micropillars with polyvinyltrimethoxysilane (PVTMS) colloidal micro- and nanoparticles enhanced the mechanical stability of the flexible micropillars without compromising powerful bending actuation. This allowed actuation of the micropillar arrays in air as well as in liquid media. The magnetic micropillars were rendered superhydrophobic by grafting hydrophobic self-assemnled monolayer onto the PVTMS micro- and nanoparticles that are covalently bonded to the surface. This enabled directed water droplet motion by repetitive bending and recovery of the micropillars. Combining mechanical stability with robust superhydrophobicity can lead to numerous practical applications of cilia-inspired thiol-ene magnetic micropillars.en
dc.format.extent108 + app. 32
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-0271-0 (electronic)
dc.identifier.isbn978-952-64-0270-3 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/102698
dc.identifier.urnURN:ISBN:978-952-64-0271-0
dc.language.isoenen
dc.opnTaboryski, Rafael, Prof., DTU Technical University of Denmark, Denmark
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Al-Azawi, Anas; Latikka, Mika; Jokinen, Ville; Franssila, Sami; Ras, Robin A. 2017. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces. Small, 13, 38, 1700860. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201806183316.DOI: 10.1002/smll.201700860
dc.relation.haspart[Publication 2]: Al-Azawi, Anas; Hörenz, Christoph; Tupasela, Topi; Ikkala, Olli; Jokinen, Ville; Franssila, Sami; Ras, Robin. H. A. 2020. Slippery and Magnetically Responsive Micropillared Surfaces for Manipulation of Droplets and Beads. AIP Advances, 10, 8, 085021. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202009185444. DOI: 10.1063/5.0012852
dc.relation.haspart[Publication 3]: Al-Azawi, Anas; Cenev, Zoran; Tupasela, Topi; Peng, Bo; Ikkala, Olli; Zhou, Quan; Jokinen, Ville; Franssila, Sami; Ras, Robin. H. A. 2020. Tunable and Magnetic Thiolene Micropillar Arrays. Macromolecular Rapid Communications, 41, 2, 1900522. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202001021161. DOI: 10.1002/marc.201900522
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries19/2021
dc.revvan der Wijngaart, Wouter, Prof., KTH Royal Institute of Technology, Sweden
dc.revTaboryski, Rafael, Prof., DTU Technical University of Denmark, Denmark
dc.subject.keywordsuperhydrophobicityen
dc.subject.keywordwetting transitionen
dc.subject.keywordmagnetic pillarsen
dc.subject.keywordthiol-ene elastomeren
dc.subject.keyworddroplet manipulationen
dc.subject.otherPhysicsen
dc.titleProgrammable and Responsive Superhydrophobic Surfacesen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2021-03-19_1447
local.aalto.archiveyes
local.aalto.formfolder2021_02_16_klo_13_58
local.aalto.infraOtaNano - Aalto Nanofab/Micronova
local.aalto.infraOtaNano - Nanomicroscopy Center
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
isbn9789526402710.pdf
Size:
3.99 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
isbn9789526402710_errata.pdf
Size:
189.55 KB
Format:
Adobe Portable Document Format