Multi-channel Low-rank Convolution of Jointly Compressed Room Impulse Responses

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJalmby, Martinen_US
dc.contributor.authorElvander, Filipen_US
dc.contributor.authorvan Waterschoot, Toonen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorStructured and Stochastic Modelingen
dc.contributor.organizationKU Leuvenen_US
dc.date.accessioned2024-08-09T11:03:15Z
dc.date.available2024-08-09T11:03:15Z
dc.date.issued2024en_US
dc.descriptionPublisher Copyright: Authors
dc.description.abstractThe room impulse response (RIR) describes the response of a room to an acoustic excitation signal and models the acoustic channel between a point source and receiver. RIRs are used in a wide range of applications, e.g., virtual reality. In such an application, the availability of closely spaced RIRs and the capability to achieve low latency are imperative to provide an immersive experience. However, representing a complete acoustic environment using a fine grid of RIRs is prohibitive from a storage point of view and without exploiting spatial proximity, acoustic rendering becomes computationally expensive. We therefore propose two methods for the joint compression of multiple RIRs, based on the generalized low-rank approximation of matrices (GLRAM), for the purpose of efficiently storing RIRs and allowing for low-latency convolution. We show how one of the components of the GLRAM decomposition is virtually invariant to the change of position of the source throughout the room and how this can be exploited in the modeling and convolution. In simulations we show how this offers high compression, with less quality degradation than comparable benchmark methods.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJalmby, M, Elvander, F & van Waterschoot, T 2024, 'Multi-channel Low-rank Convolution of Jointly Compressed Room Impulse Responses', IEEE Open journal of Signal Processing, vol. 5, pp. 850-857. https://doi.org/10.1109/OJSP.2024.3410089en
dc.identifier.doi10.1109/OJSP.2024.3410089en_US
dc.identifier.issn2644-1322
dc.identifier.otherPURE UUID: 48ca96d6-ff09-45c3-aab0-6924f59e2cf4en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/48ca96d6-ff09-45c3-aab0-6924f59e2cf4en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85195391308&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/153405870/Multi-Channel_Low-Rank_Convolution_of_Jointly_Compressed_Room_Impulse_Responses.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/129794
dc.identifier.urnURN:NBN:fi:aalto-202408095362
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Open journal of Signal Processingen
dc.relation.ispartofseriesVolume 5, pp. 850-857en
dc.rightsopenAccessen
dc.subject.keywordConvolutionen_US
dc.subject.keywordLow latency communicationen_US
dc.subject.keywordlow-rank modelingen_US
dc.subject.keywordMatrix decompositionen_US
dc.subject.keywordReceiversen_US
dc.subject.keywordroom impulse responsesen_US
dc.subject.keywordSignal processing algorithmsen_US
dc.subject.keywordSolid modelingen_US
dc.subject.keywordVectorsen_US
dc.titleMulti-channel Low-rank Convolution of Jointly Compressed Room Impulse Responsesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files