Bonsai - Diverse and Shallow Trees for Extreme Multi-label Classification
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2020-11
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
21
Series
Machine Learning, Volume 109, issue 11, pp. 2099-2119
Abstract
Extreme multi-label classification (XMC) refers to supervised multi-label learning involving hundreds of thousands or even millions of labels.In this paper, we develop a suite of algorithms, called Bonsai, which generalizes the notion of label representation in XMC, and partitions the labels in the representation space to learn shallow trees.We show three concrete realizations of this label representation space including: (i) the input space which is spanned by the input features, (ii) the output space spanned by label vectors based on their co-occurrence with other labels, and (iii) the joint space by combining the input and output representations. Furthermore, the constraint-free multi-way partitions learnt iteratively in these spaces lead to shallow trees.By combining the effect of shallow trees and generalized label representation, Bonsai achieves the best of both worlds—fast training which is comparable to state-of-the-art tree-based methods in XMC, and much better prediction accuracy, particularly on tail-labels. On a benchmark Amazon-3M dataset with 3 million labels, Bonsai outperforms a state-of-the-art one-vs-rest method in terms of prediction accuracy, while being approximately 200 times faster to train. The code for Bonsai is available at https://github.com/xmc-aalto/bonsai.Description
Keywords
Other note
Citation
Khandagale, S, Xiao, H & Babbar, R 2020, ' Bonsai - Diverse and Shallow Trees for Extreme Multi-label Classification ', Machine Learning, vol. 109, no. 11, pp. 2099-2119 . https://doi.org/10.1007/s10994-020-05888-2