Machine Learning X-ray Spectroscopy for Materials Characterization

No Thumbnail Available

URL

Journal Title

Journal ISSN

Volume Title

Sähkötekniikan korkeakoulu | Bachelor's thesis
Electronic archive copy is available locally at the Harald Herlin Learning Centre. The staff of Aalto University has access to the electronic bachelor's theses by logging into Aaltodoc with their personal Aalto user ID. Read more about the availability of the bachelor's theses.

Date

2019-05-21

Department

Major/Subject

Automaatio ja robotiikka

Mcode

ELEC3014

Degree programme

Sähkötekniikan kandidaattiohjelma

Language

en

Pages

19

Series

Description

Supervisor

Forsman, Pekka

Thesis advisor

Aarva, Anja

Keywords

amorphous carbon, machine learning, X-ray spectroscopy, density functional theory, smooth overlap of atomic positions, hyperparameter

Other note

Citation