Learning Global Pairwise Interactions with Bayesian Neural Networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorCui, Tianyuen_US
dc.contributor.authorMarttinen, Pekkaen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorDe Giacomo, Giuseppeen_US
dc.contributor.editorCatala, Alejandroen_US
dc.contributor.editorDilkina, Bistraen_US
dc.contributor.editorMilano, Michelaen_US
dc.contributor.editorBarro, Senenen_US
dc.contributor.editorBugarin, Albertoen_US
dc.contributor.editorLang, Jeromeen_US
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.date.accessioned2020-10-02T06:22:24Z
dc.date.available2020-10-02T06:22:24Z
dc.date.issued2020-08-24en_US
dc.description.abstractEstimating global pairwise interaction effects, i.e., the difference between the joint effect and the sum of marginal effects of two input features, with uncertainty properly quantified, is centrally important in science applications. We propose a non-parametric probabilistic method for detecting interaction effects of unknown form. First, the relationship between the features and the output is modelled using a Bayesian neural network, capable of representing complex interactions and principled uncertainty. Second, interaction effects and their uncertainty are estimated from the trained model. For the second step, we propose an intuitive global interaction measure: Bayesian Group Expected Hessian (GEH), which aggregates information of local interactions as captured by the Hessian. GEH provides a natural trade-off between type I and type II error and, moreover, comes with theoretical guarantees ensuring that the estimated interaction effects and their uncertainty can be improved by training a more accurate BNN. The method empirically outperforms available non-probabilistic alternatives on simulated and real-world data. Finally, we demonstrate its ability to detect interpretable interactions between higher-level features (at deeper layers of the neural network).en
dc.description.versionPeer revieweden
dc.format.extent1087-1094
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationCui, T, Marttinen, P & Kaski, S 2020, Learning Global Pairwise Interactions with Bayesian Neural Networks . in G De Giacomo, A Catala, B Dilkina, M Milano, S Barro, A Bugarin & J Lang (eds), ECAI 2020 - 24th European Conference on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Proceedings . Frontiers in Artificial Intelligence and Applications, vol. 325, IOS Press, pp. 1087-1094, European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 08/06/2020 . https://doi.org/10.3233/FAIA200205en
dc.identifier.doi10.3233/FAIA200205en_US
dc.identifier.isbn978-1-64368-100-9
dc.identifier.isbn978-1-64368-101-6
dc.identifier.issn0922-6389
dc.identifier.issn1879-8314
dc.identifier.otherPURE UUID: 19a326cd-659d-467d-8cea-04de3c234a53en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/19a326cd-659d-467d-8cea-04de3c234a53en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85091737485&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/51763439/Cui_Learning_Global.FAIA_325_FAIA200205.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/46768
dc.identifier.urnURN:NBN:fi:aalto-202010025733
dc.language.isoenen
dc.publisherIOS Press
dc.relation.ispartofEuropean Conference on Artificial Intelligenceen
dc.relation.ispartofseries24th European Conference on Artificial Intelligenceen
dc.relation.ispartofseriesFrontiers in Artificial Intelligence and Applicationsen
dc.relation.ispartofseriesVolume 325en
dc.rightsopenAccessen
dc.titleLearning Global Pairwise Interactions with Bayesian Neural Networksen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files