Learning Global Pairwise Interactions with Bayesian Neural Networks

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2020-08-24

Major/Subject

Mcode

Degree programme

Language

en

Pages

1087-1094

Series

24th European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, Volume 325

Abstract

Estimating global pairwise interaction effects, i.e., the difference between the joint effect and the sum of marginal effects of two input features, with uncertainty properly quantified, is centrally important in science applications. We propose a non-parametric probabilistic method for detecting interaction effects of unknown form. First, the relationship between the features and the output is modelled using a Bayesian neural network, capable of representing complex interactions and principled uncertainty. Second, interaction effects and their uncertainty are estimated from the trained model. For the second step, we propose an intuitive global interaction measure: Bayesian Group Expected Hessian (GEH), which aggregates information of local interactions as captured by the Hessian. GEH provides a natural trade-off between type I and type II error and, moreover, comes with theoretical guarantees ensuring that the estimated interaction effects and their uncertainty can be improved by training a more accurate BNN. The method empirically outperforms available non-probabilistic alternatives on simulated and real-world data. Finally, we demonstrate its ability to detect interpretable interactions between higher-level features (at deeper layers of the neural network).

Description

Keywords

Other note

Citation

Cui, T, Marttinen, P & Kaski, S 2020, Learning Global Pairwise Interactions with Bayesian Neural Networks . in G De Giacomo, A Catala, B Dilkina, M Milano, S Barro, A Bugarin & J Lang (eds), ECAI 2020 - 24th European Conference on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial Intelligence, PAIS 2020 - Proceedings . Frontiers in Artificial Intelligence and Applications, vol. 325, IOS Press, pp. 1087-1094, European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 08/06/2020 . https://doi.org/10.3233/FAIA200205