Cooperative colloidal self-assembly of metal-protein superlattice wires

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLiljeström, Villeen_US
dc.contributor.authorOra, Arien_US
dc.contributor.authorHassinen, Jukkaen_US
dc.contributor.authorRekola, Heikkien_US
dc.contributor.authorNonappa, Nonappaen_US
dc.contributor.authorHeilala, Mariaen_US
dc.contributor.authorHynninen, Villeen_US
dc.contributor.authorJoensuu, Jussi J.en_US
dc.contributor.authorRas, Robinen_US
dc.contributor.authorTörmä, Päivien_US
dc.contributor.authorIkkala, Ollien_US
dc.contributor.authorKostiainen, Maurien_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorMolecular Materialsen
dc.contributor.groupauthorQuantum Dynamicsen
dc.contributor.groupauthorBiomolecular Materialsen
dc.contributor.groupauthorSoft Matter and Wettingen
dc.contributor.groupauthorBiohybrid Materialsen
dc.contributor.organizationVTT Technical Research Centre of Finlanden_US
dc.date.accessioned2017-10-15T20:40:23Z
dc.date.available2017-10-15T20:40:23Z
dc.date.issued2017-09-22en_US
dc.description| openaire: EC/H2020/725513/EU//SuperRepel
dc.description.abstractMaterial properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLiljeström, V, Ora, A, Hassinen, J, Rekola, H, Nonappa, N, Heilala, M, Hynninen, V, Joensuu, J J, Ras, R, Törmä, P, Ikkala, O & Kostiainen, M 2017, 'Cooperative colloidal self-assembly of metal-protein superlattice wires', Nature Communications, vol. 8, no. 1, 671, pp. 1-10. https://doi.org/10.1038/s41467-017-00697-zen
dc.identifier.doi10.1038/s41467-017-00697-zen_US
dc.identifier.issn2041-1723
dc.identifier.otherPURE UUID: 85babb43-8344-42f6-89c9-60967935261aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/85babb43-8344-42f6-89c9-60967935261aen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/15276869/s41467_017_00697_z.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/28235
dc.identifier.urnURN:NBN:fi:aalto-201710157095
dc.language.isoenen
dc.publisherNature Publishing Group
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/725513/EU//SuperRepelen_US
dc.relation.ispartofseriesNature Communicationsen
dc.relation.ispartofseriesVolume 8, issue 1, pp. 1-10en
dc.rightsopenAccessen
dc.titleCooperative colloidal self-assembly of metal-protein superlattice wiresen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files