Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Journal of Power Sources, Volume 450
Abstract
Copper is a dominating impurity in Co-rich Li(Co,Ni,Mn)O2 battery waste fractions and may exist in similar quantities (e.g. 6 wt%) as Li, Ni and Mn. This paper investigates the behavior of copper from waste batteries up to recycled active materials and the findings highlight that copper contamination is not necessarily detrimental for the active materials in trace amounts, but can rather increase the discharge capacity at high rates. Firstly, industrially crushed battery waste was treated hydrometallurgically to produce Li2CO3 and CoSO4·2H2O precipitates for re-use, before being calcined to prepare fresh LiCoO2 materials. Results suggest that during the hydrometallurgical recycling process, Cu is likely to co-extract along the Co; in the current work both high and low Cu-contaminated CoSO4·2H2O precipitates were obtained and in the former case, formation of CuO as a secondary phase occurred upon calcination. The presence of Cu contamination induced up to ca. 35 mAh/g decrease in the specific capacity, compared to pure LiCoO2. However, a low level of Cu inclusion was found to be advantageous at high discharge rates (4.0C and 5.0C) resulting in a doubling of the capacity (110–120 mAh/g) when compared with pure LiCoO2 (40–60 mAh/g).Description
Other note
Citation
Peng, C, Lahtinen, K, Medina, E, Kauranen, P, Karppinen, M, Kallio, T, Wilson, B P & Lundström, M 2020, 'Role of impurity copper in Li-ion battery recycling to LiCoO 2 cathode materials', Journal of Power Sources, vol. 450, 227630. https://doi.org/10.1016/j.jpowsour.2019.227630