Counterdiabatic vortex pump in spinor Bose-Einstein condensates

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2017-01-17
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-7
Series
PHYSICAL REVIEW A, Volume 95, issue 1
Abstract
Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali-metal atoms. It was recently shown that counterdiabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counterdiabatic control, leading to the highest angular momentum per particle reported to date for the vortex pump. Our studies are based on numerical integration of the three-dimensional multicomponent Gross-Pitaevskii equation, which conveniently yields the density profiles, phase profiles, angular momentum, and other physically important quantities of the spin-1 system. Our results motivate the experimental realization of the vortex pump and studies of the rich physics it involves.
Description
Keywords
Other note
Citation
Ollikainen , T , Masuda , S , Möttönen , M & Nakahara , M 2017 , ' Counterdiabatic vortex pump in spinor Bose-Einstein condensates ' , Physical Review A , vol. 95 , no. 1 , 013615 , pp. 1-7 . https://doi.org/10.1103/PhysRevA.95.013615