SITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registration
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Honkamaa, Joel | |
dc.contributor.author | Marttinen, Pekka | |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Marttinen P. | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
dc.contributor.organization | Department of Computer Science | |
dc.date.accessioned | 2024-12-11T10:27:18Z | |
dc.date.available | 2024-12-11T10:27:18Z | |
dc.date.issued | 2024-11 | |
dc.description | | openaire: EC/H2020/101016775/EU//INTERVENE | |
dc.description.abstract | Deep learning has emerged as a strong alternative for classical iterative methods for de- formable medical image registration, where the goal is to find a mapping between the coordinate systems of two images. Popular classical image registration methods enforce the useful inductive biases of symmetricity, inverse consistency, and topology preservation by construction. However, while many deep learning registration methods encourage these properties via loss functions, no earlier methods enforce all of them by construction. Here, we propose a novel registration architecture based on extracting multi-resolution feature representations which is by construction symmetric, inverse consistent, and topology pre- serving. We also develop an implicit layer for memory efficient inversion of the deformation fields. Our method achieves state-of-the-art registration accuracy on three datasets. The code is available at https://github.com/honkamj/SITReg | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 47 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Honkamaa, J & Marttinen, P 2024, 'SITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registration', The Journal of Machine Learning for Biomedical Imaging, vol. 2, 026, pp. 2148-2194. https://doi.org/10.59275:j.melba.2024-276b | en |
dc.identifier.doi | 10.59275:j.melba.2024-276b | |
dc.identifier.issn | 2766-905X | |
dc.identifier.other | PURE UUID: 4534f6fa-c6a7-4336-83a5-35d664ab82d1 | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/4534f6fa-c6a7-4336-83a5-35d664ab82d1 | |
dc.identifier.other | PURE LINK: https://www.melba-journal.org/papers/2024:026.html | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/166426195/SITReg_-_Multi-resolution_architecture_for_symmetric_inverse_consistent_and_topology_preserving_image_registration.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/132208 | |
dc.identifier.urn | URN:NBN:fi:aalto-202412117686 | |
dc.language.iso | en | en |
dc.publisher | MELBA | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENE | |
dc.relation.ispartofseries | The Journal of Machine Learning for Biomedical Imaging | en |
dc.relation.ispartofseries | Volume 2, pp. 2148-2194 | en |
dc.rights | openAccess | en |
dc.title | SITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registration | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |