SITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registration

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHonkamaa, Joel
dc.contributor.authorMarttinen, Pekka
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.organizationDepartment of Computer Science
dc.date.accessioned2024-12-11T10:27:18Z
dc.date.available2024-12-11T10:27:18Z
dc.date.issued2024-11
dc.description| openaire: EC/H2020/101016775/EU//INTERVENE
dc.description.abstractDeep learning has emerged as a strong alternative for classical iterative methods for de- formable medical image registration, where the goal is to find a mapping between the coordinate systems of two images. Popular classical image registration methods enforce the useful inductive biases of symmetricity, inverse consistency, and topology preservation by construction. However, while many deep learning registration methods encourage these properties via loss functions, no earlier methods enforce all of them by construction. Here, we propose a novel registration architecture based on extracting multi-resolution feature representations which is by construction symmetric, inverse consistent, and topology pre- serving. We also develop an implicit layer for memory efficient inversion of the deformation fields. Our method achieves state-of-the-art registration accuracy on three datasets. The code is available at https://github.com/honkamj/SITRegen
dc.description.versionPeer revieweden
dc.format.extent47
dc.format.mimetypeapplication/pdf
dc.identifier.citationHonkamaa, J & Marttinen, P 2024, 'SITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registration', The Journal of Machine Learning for Biomedical Imaging, vol. 2, 026, pp. 2148-2194. https://doi.org/10.59275:j.melba.2024-276ben
dc.identifier.doi10.59275:j.melba.2024-276b
dc.identifier.issn2766-905X
dc.identifier.otherPURE UUID: 4534f6fa-c6a7-4336-83a5-35d664ab82d1
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4534f6fa-c6a7-4336-83a5-35d664ab82d1
dc.identifier.otherPURE LINK: https://www.melba-journal.org/papers/2024:026.html
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/166426195/SITReg_-_Multi-resolution_architecture_for_symmetric_inverse_consistent_and_topology_preserving_image_registration.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132208
dc.identifier.urnURN:NBN:fi:aalto-202412117686
dc.language.isoenen
dc.publisherMELBA
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENE
dc.relation.ispartofseriesThe Journal of Machine Learning for Biomedical Imagingen
dc.relation.ispartofseriesVolume 2, pp. 2148-2194en
dc.rightsopenAccessen
dc.titleSITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registrationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files