Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMoghadam, Saeed Montazerien_US
dc.contributor.authorPinchefsky, Elanaen_US
dc.contributor.authorTse, Ilseen_US
dc.contributor.authorMarchi, Vivianaen_US
dc.contributor.authorKohonen, Jukkaen_US
dc.contributor.authorKauppila, Minnaen_US
dc.contributor.authorAiraksinen, Manuen_US
dc.contributor.authorTapani, Karoliinaen_US
dc.contributor.authorNevalainen, Päivien_US
dc.contributor.authorHahn, Cecilen_US
dc.contributor.authorTam, Emily W.Y.en_US
dc.contributor.authorStevenson, Nathan J.en_US
dc.contributor.authorVanhatalo, Sampsaen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProfessorship Kaski Petterien
dc.contributor.groupauthorJorma Skyttä's Groupen
dc.contributor.organizationUniversity of Helsinkien_US
dc.contributor.organizationUniversity of Montrealen_US
dc.contributor.organizationUniversity of Torontoen_US
dc.contributor.organizationQueensland Institute of Medical Researchen_US
dc.date.accessioned2021-08-04T06:42:06Z
dc.date.available2021-08-04T06:42:06Z
dc.date.issued2021-05-31en_US
dc.description| openaire: EC/H2020/813483/EU//INFANS
dc.description.abstractNeonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMoghadam, S M, Pinchefsky, E, Tse, I, Marchi, V, Kohonen, J, Kauppila, M, Airaksinen, M, Tapani, K, Nevalainen, P, Hahn, C, Tam, E W Y, Stevenson, N J & Vanhatalo, S 2021, ' Building an Open Source Classifier for the Neonatal EEG Background : A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization ', Frontiers in Human Neuroscience, vol. 15, 675154 . https://doi.org/10.3389/fnhum.2021.675154en
dc.identifier.doi10.3389/fnhum.2021.675154en_US
dc.identifier.issn1662-5161
dc.identifier.otherPURE UUID: 77c3892d-b3e4-4860-abb1-1a88183142bben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/77c3892d-b3e4-4860-abb1-1a88183142bben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85107789152&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/65435279/Building_an_Open_Source_Classifier.fnhum_15_675154.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/108900
dc.identifier.urnURN:NBN:fi:aalto-202108048144
dc.language.isoenen
dc.publisherFRONTIERS MEDIA SA
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/813483/EU//INFANSen_US
dc.relation.ispartofseriesFRONTIERS IN HUMAN NEUROSCIENCEen
dc.relation.ispartofseriesVolume 15en
dc.rightsopenAccessen
dc.subject.keywordartificial neural networken_US
dc.subject.keywordbackground classifieren_US
dc.subject.keywordEEG monitoringen_US
dc.subject.keywordEEG trenden_US
dc.subject.keywordneonatal EEGen_US
dc.subject.keywordneonatal intensive care uniten_US
dc.subject.keywordsupport vector machineen_US
dc.titleBuilding an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualizationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files