Atomistic Simulations of Solid-Liquid Interfaces

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorFoster, Adam S., Prof., Aalto University, Department of Applied Physics, Finland
dc.contributor.authorReischl, Bernhard
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.labCOMP/Surfaces and Interfaces at the Nanoscale (SIN)en
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorFoster, Adam S., Prof., Aalto University, Department of Applied Physics, Finland
dc.date.accessioned2013-11-20T10:00:37Z
dc.date.available2013-11-20T10:00:37Z
dc.date.defence2013-11-20
dc.date.issued2013
dc.description.abstractSolid-liquid interfaces can be encountered in systems and processes ranging from biomineralization to fuel cell technology, and play an important role in growth or dissolution mechanisms of particles or surfaces in solution. The surface-induced changes of material properties not only affect the solid, but also the liquid itself: the structure of the liquid at the interface is very different from bulk. Understanding these processes occurring at solid-liquid interfaces at the atomistic scale is fundamental to a wide range of disciplines. New insight can be gained by combining cutting edge experimental techniques and computer simulations. The atomic force microscope (AFM) can be used to study solid-liquid interfaces in high resolution. We have developed new simulation methods, based on atomistic molecular dynamics and free energy calculations in order to model the complex imaging mechanism. In addition to the direct interactions between AFM tip and surface, our approach takes into account entropic contributions from interactions with water molecules in hydration layers on top of the surface as well as in the solvation shell of the AFM tip. For the Calcite (10-14) surface in water, we find good agreement between our simulations and recent 3D AFM data. We have also developed and tested a simple model to calculate AFM images only from differences in equilibrium local water density in hydration layers, reducing the computational cost by up to three orders of magnitude compared to free energy calculations including an explicit AFM tip. We have further studied the hydration layer structure and dissociation kinetics of the NaCl (100) surface in water from ab initio molecular dynamics, as well as the role of surface premelting of ice in the context of atomic scale friction at the ice-ice interface.en
dc.format.extent81 + app. 53
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-952-60-5420-9 (electronic)
dc.identifier.isbn978-952-60-5419-3 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/11443
dc.identifier.urnURN:ISBN:978-952-60-5420-9
dc.language.isoenen
dc.opnGale, Julian D., Prof., Curtin University, Australia
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: B. Reischl, M. Watkins and A. S. Foster. Free Energy Approaches for Modeling Atomic Force Microscopy in Liquids. J. Chem. Theory Comput., 9, 1, 600–608, January 2013.
dc.relation.haspart[Publication 2]: M. Watkins and B. Reischl. A simple approximation for forces exerted on an AFM tip in liquid. J. Chem. Phys., 138, 154703, April 2013.
dc.relation.haspart[Publication 3]: T. Fukuma, N. Kobayashi, B. Reischl, P. Spijker, F. Federici Canova and A. S. Foster. Imaging mechanism of hydration structures by threedimensional scanning force microscopy. In preparation, October 2013.
dc.relation.haspart[Publication 4]: J.-C. Chen, B. Reischl, N. Holmberg, A. S. Foster and K. Laasonen. First principles Kinetic Monte Carlo simulations of the dissolution of NaCl in water. In preparation, October 2013.
dc.relation.haspart[Publication 5]: N. Samadashvili, B. Reischl, T. Hynninen, T. Ala-Nissilä and A. S. Foster. Atomistic simulations of friction at an ice-ice interface. Friction, 1, 3, 242–251, August 2013.
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries180/2013
dc.revVattulainen, Ilpo, Prof., Tampere University of Technology, Finland
dc.revJelínek, Pavel, Dr., Institute of Physics of the Czech Academy of Science, Czech Republic
dc.subject.keywordsolid-liquid interfacesen
dc.subject.keywordhydration layer structureen
dc.subject.keywordatomic force microscopyen
dc.subject.keywordmolecular dynamicsen
dc.subject.keywordfree energy calculationsen
dc.subject.otherPhysicsen
dc.titleAtomistic Simulations of Solid-Liquid Interfacesen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.digiauthask
local.aalto.digifolderAalto_66520

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526054209.pdf
Size:
7.51 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
licence.txt
Size:
1.22 KB
Format:
Plain Text
Description: