A New Teaching–Learning-based Chicken Swarm Optimization Algorithm
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Deb, Sanchari | en_US |
dc.contributor.author | Gao, Xiao Zhi | en_US |
dc.contributor.author | Tammi, Kari | en_US |
dc.contributor.author | Kalita, Karuna | en_US |
dc.contributor.author | Mahanta, Pinakeswar | en_US |
dc.contributor.department | Department of Mechanical Engineering | en |
dc.contributor.organization | Indian Institute of Technology Guwahati | en_US |
dc.contributor.organization | University of Eastern Finland | en_US |
dc.date.accessioned | 2019-11-07T12:01:51Z | |
dc.date.available | 2019-11-07T12:01:51Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2020-08-20 | en_US |
dc.date.issued | 2019 | en_US |
dc.description.abstract | Chicken Swarm Optimization (CSO) is a novel swarm intelligence-based algorithm known for its good performance on many benchmark functions as well as real-world optimization problems. However, it is observed that CSO sometimes gets trapped in local optima. This work proposes an improved version of the CSO algorithm with modified update equation of the roosters and a novel constraint-handling mechanism. Further, the work also proposes synergy of the improved version of CSO with Teaching–Learning-based Optimization (TLBO) algorithm. The proposed ICSOTLBO algorithm possesses the strengths of both CSO and TLBO. The efficacy of the proposed algorithm is tested on eight basic benchmark functions, fifteen computationally expensive benchmark functions as well as two real-world problems. Further, the performance of ICSOTLBO is also compared with a number of state-of-the-art algorithms. It is observed that the proposed algorithm performs better than or as good as many of the existing algorithms. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 19 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Deb, S, Gao, X Z, Tammi, K, Kalita, K & Mahanta, P 2019, ' A New Teaching–Learning-based Chicken Swarm Optimization Algorithm ', Soft Computing . https://doi.org/10.1007/s00500-019-04280-0 | en |
dc.identifier.doi | 10.1007/s00500-019-04280-0 | en_US |
dc.identifier.issn | 1432-7643 | |
dc.identifier.issn | 1433-7479 | |
dc.identifier.other | PURE UUID: 273fe996-61f7-405d-9fa9-bfdd50b51c71 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/273fe996-61f7-405d-9fa9-bfdd50b51c71 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85071079732&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/37756480/ENG_Deb_et_al_A_New_Teaching_Learning_Soft_Computing.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/41038 | |
dc.identifier.urn | URN:NBN:fi:aalto-201911076043 | |
dc.language.iso | en | en |
dc.publisher | Springer Verlag | |
dc.relation.ispartofseries | Soft Computing | en |
dc.rights | openAccess | en |
dc.subject.keyword | Algorithm | en_US |
dc.subject.keyword | Benchmark | en_US |
dc.subject.keyword | Chicken Swarm Optimization | en_US |
dc.subject.keyword | Function | en_US |
dc.subject.keyword | Hybrid | en_US |
dc.subject.keyword | Teaching–Learning-based Optimization | en_US |
dc.title | A New Teaching–Learning-based Chicken Swarm Optimization Algorithm | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |