Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3−δ semiconductor electrolyte for boosting solid oxide fuel cell performance

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorRauf, Sajiden_US
dc.contributor.authorZhu, Binen_US
dc.contributor.authorShah, M. A.K.Yousafen_US
dc.contributor.authorXia, Chenen_US
dc.contributor.authorTayyab, Zuhraen_US
dc.contributor.authorAli, Nasiren_US
dc.contributor.authorYang, Changpingen_US
dc.contributor.authorMushtaq, Naveeden_US
dc.contributor.authorAsghar, Muhammad Imranen_US
dc.contributor.authorAkram, Fazlien_US
dc.contributor.authorLund, Peter D.en_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorNew Energy Technologiesen
dc.contributor.organizationHubei Universityen_US
dc.contributor.organizationChina University of Geosciences, Wuhanen_US
dc.contributor.organizationZhejiang Universityen_US
dc.contributor.organizationSoutheast University, Nanjingen_US
dc.contributor.organizationUniversity of Ulsanen_US
dc.contributor.organizationJiangsu Provincial Key Laboratory of Solar Energy Science and Technologyen_US
dc.date.accessioned2021-04-07T06:31:50Z
dc.date.available2021-04-07T06:31:50Z
dc.date.issued2021-07en_US
dc.descriptionFunding Information: This work was supported by the National Natural Science Foundation of China (NSFC) under the (grant # 11674085 and 51772080 ) and National Laboratory of solid-state Microstructures, Nanjing University for project support is also acknowledged. Dr. Asghar thanks the Hubei overseas Talent 100 program (as a distinguished professor at Hubei University) and Academy of Finland (Grant No. 13329016 and 13322738 ) for their support. Muhammad Akbar helped in the Scanning electron microscope (SEM) images assistance. Publisher Copyright: © 2021 The Author(s) Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
dc.description.abstractIntroducing multiple-ionic transport through a semiconductor-electrolyte is a promising approach to realize the low-temperature operation of SOFCs. Herein, we designed and synthesized a single-phase Ce-doped BaCo0.2Fe0.3-xTm0.1Zr0.3Y0.1O3-δ semiconductor-electrolyte possessing triple-charge (H+/O2−/e−) conduction ability. Two different compositions are synthesized: BaCo0.2Fe0.3-xCexTm0.1Zr0.3Y0.1O3-δ [x = 0.1–0.2]. The 20% doped Ce composition exhibits an outstanding oxide-ion and protonic conductivity of 0.193 S cm−1 and 0.09 S cm−1 at 530 °C and the fuel cell utilizing BaCo0.2Fe0.2Ce0.2Tm0.1Zr0.3Y0.1O3-δ as an electrolyte yields an excellent power density of 873 mW cm−2 at 530 °C. Moreover, the fuel cell performed reasonably well (383 mW cm−2) even at a low temperature of 380 °C. Furthermore, the 10% Ce-doped utilized in fuel cell device illustrates lower performance (661 mW cm−2 at 530 °C and 260 mW cm−2 at 380 °C). Successful doping of Ce supports the formation of oxygen-vacancies at the B-site of perovskite and adjusting the ratio of Fe in the compositions. Moreover, the presence of Tm also assist in the creation of oxygen vacancies. Furthermore, the boosting of electrochemical performance and ionic conductivity of applied materials are enlightened by tuning the energy-band structure via employing the UPS and UV–Vis. The physical characterizations and verification of dual-ions (H+/O2−) in the semiconductor materials are performed via different electrochemical, spectroscopic, and microscopic techniques. A systematic study revealed triple charge conduction in this promising material, which helps in boosting the electrochemical performance of the LT-SOFC.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.extent336-349
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationRauf, S, Zhu, B, Shah, M A K Y, Xia, C, Tayyab, Z, Ali, N, Yang, C, Mushtaq, N, Asghar, M I, Akram, F & Lund, P D 2021, ' Tailoring triple charge conduction in BaCo 0.2 Fe 0.1 Ce 0.2 Tm 0.1 Zr 0.3 Y 0.1 O 3−δ semiconductor electrolyte for boosting solid oxide fuel cell performance ', Renewable Energy, vol. 172, pp. 336-349 . https://doi.org/10.1016/j.renene.2021.03.031en
dc.identifier.doi10.1016/j.renene.2021.03.031en_US
dc.identifier.issn0960-1481
dc.identifier.otherPURE UUID: d37c505d-8acb-4061-bdb0-608077848ba3en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d37c505d-8acb-4061-bdb0-608077848ba3en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85102874066&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/61649406/Rauf_Tailoring_triple_charge_conduction.1_s2.0_S0960148121003852_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/103537
dc.identifier.urnURN:NBN:fi:aalto-202104072806
dc.language.isoenen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofseriesRenewable Energyen
dc.relation.ispartofseriesVolume 172en
dc.rightsopenAccessen
dc.subject.keywordDopingen_US
dc.subject.keywordEnergy band alignmenten_US
dc.subject.keywordFuel cellen_US
dc.subject.keywordSemiconductoren_US
dc.subject.keywordTriple charge conductionen_US
dc.titleTailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3−δ semiconductor electrolyte for boosting solid oxide fuel cell performanceen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files