Nanofibrillar networks enable universal assembly of superstructured particle constructs

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-05

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Science Advances, Volume 6, issue 19

Abstract

Superstructured colloidal materials exploit the synergies between components to develop new or enhanced functions. Cohesion is a primary requirement for scaling up these assemblies into bulk materials, and it has only been fulfilled in case-specific bases. Here, we demonstrate that the topology of nanonetworks formed from cellulose nanofibrils (CNFs) enables robust superstructuring with virtually any particle. An intermixed network of fibrils with particles increases the toughness of the assemblies by up to three orders of magnitude compared, for instance, to sintering. Supramolecular cohesion is transferred from the fibrils to the constructs following a power law, with a constant decay factor for particle sizes from 230 nm to 40 μm. Our findings are applicable to other nanofiber dimensions via a rationalization of the morphological aspects of both particles and nanofibers. CNF-based cohesion will move developments of functional colloids from laboratory-scale toward their implementation in large-scale nanomanufacturing of bulk materials.

Description

* Ack:ssa mutta ei silti mukaan raportointiin | openaire: EC/H2020/788489/EU//BioELCell

Keywords

Other note

Citation

Mattos, B D, Tardy, B L, Greca, L G, Kämäräinen, T, Xiang, W, Cusola, O, Magalhães, W L E & Rojas, O J 2020, ' Nanofibrillar networks enable universal assembly of superstructured particle constructs ', Science Advances, vol. 6, no. 19, 7328 . https://doi.org/10.1126/sciadv.aaz7328