Aggregation ready flexibility management methods for mechanical ventilation systems in buildings

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal

Other link related to publication
Degree programme
Energy and Buildings, Volume 296
Increasing use of volatile renewable energy sources causes challenges in balancing supply and demand. Therefore, demand-side flexibility has rising importance for system operators and balancing authorities. Flexibility management methods are needed to integrate loads like ventilation systems of different buildings (e.g., residential and commercial) into flexibility service. However, the available methods described in research papers require further development for implementation in practice. Heating and cooling systems have received much attention from researchers, but the potential of ventilation systems has been left out of focus. Therefore, this paper provides a complete set of novel flexibility management methods for ventilation systems created from an aggregator's viewpoint. The flexibility is quantified through capacity (e.i. the amount of power consumption that can be altered), forced ventilation rate duration, and the tendered price for the service. The proposed methods were tested on a building modelconstructed and simulated in IDA ICE. The data processing and flexibility management methods were applied in MATLAB. Two types of ventilation systems with different sensor configurations were considered: constant and variable air volume. Forced ventilation rate duration is calculated using energy and mass balance analysis where the root means squared error was 10 to 33 min, depending on the system type, measured parameter, and sensor location. The flexibility service pricing model was tested on the 2022 years' manual frequency restoration reserve (mFRR) activation and balance energy market data.
| openaire: EC/H2020/856602/EU//FINEST TWINS Funding Information: This work has been supported by the European Commission through the H2020 project Finest Twins grant No. 856602; and by the Estonian Ministry of Education and Research and European Regional Fund grant 2014-2020.4.01.20-0289. Additional support was acquired from the Estonian Research Council grant PSG739. Publisher Copyright: © 2023
Buildings, Explicit demand flexibility, Flexibility management, Forecasting, Mechanical ventilation systems
Other note
Maask , V , Rosin , A , Korõtko , T , Thalfeldt , M , Syri , S & Ahmadiahangar , R 2023 , ' Aggregation ready flexibility management methods for mechanical ventilation systems in buildings ' , Energy and Buildings , vol. 296 , 113369 .