Direct measurement of carbon nanotube temperature between fiber ferrules as a universal tool for saturable absorber stability investigation
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Carbon, Volume 184, pp. 941-948
Abstract
Single-walled carbon nanotubes (SWCNTs) are widely explored for the ultrashort pulse generation in the fiber lasers enabled by pronounced saturable absorption (SA) effect. Despite many remarkable results demonstrated in the area, degradation of the samples inside the laser cavity limits the widespread use of SWCNT-SA. In the present work, we investigate the degradation mechanism by measuring the temperature of the carbon nanotubes in an operating laser cavity in accordance with the Raman G-band position. We identify the process behind the sample degradation by comparing the burning temperature of the sample with results of thermogravimetric analysis. We apply this approach for the SWCNTs in polyvinyl alcohol polymer matrix and polymer-free SWCNT thin film and demonstrate that these samples undergo different degradation mechanism. Proposed technique provides a useful instrument for optimization of SWCNT-SA for desired ultrafast laser generation.Description
Funding Information: A.A.M. and A.G.N. thanks RFBR research project ? 20-32-90233 for support in experimental part of the work. D.V.K. thanks Russian Science Foundation grant No. 20-73-10256 for support in synthesis of aerosol SWCNT films. V.D. thanks the Russian Science Foundation (Grant No. 17-72-30006) for the support in characterization of pulse laser generation. Funding Information: A.A.M. and A.G.N. thanks RFBR research project № 20-32-90233 for support in experimental part of the work. D.V.K. thanks Russian Science Foundation grant No. 20-73-10256 for support in synthesis of aerosol SWCNT films. V.D. thanks the Russian Science Foundation (Grant No. 17-72-30006 ) for the support in characterization of pulse laser generation. Publisher Copyright: © 2021 Elsevier Ltd
Other note
Citation
Galiakhmetova, D, Gladush, Y, Mkrtchyan, A, Fedorov, F S, Khabushev, E M, Krasnikov, D V, Chinnambedu-Murugesan, R, Manuylovich, E, Dvoyrin, V, Rozhin, A, Rümmeli, M, Alyatkin, S, Lagoudakis, P & Nasibulin, A G 2021, 'Direct measurement of carbon nanotube temperature between fiber ferrules as a universal tool for saturable absorber stability investigation', Carbon, vol. 184, pp. 941-948. https://doi.org/10.1016/j.carbon.2021.08.032