Single-phase friction riveting: metallic rivet deformation, temperature evolution, and joint mechanical performance

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPina Cipriano, Gonçaloen_US
dc.contributor.authorAhiya, Aakashen_US
dc.contributor.authordos Santos, Jorge F.en_US
dc.contributor.authorVilaça, Pedroen_US
dc.contributor.authorAmancio-Filho, Sergio T.en_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorAdvanced Manufacturing and Materialsen
dc.contributor.organizationHelmholtz-Zentrum Geesthacht Centre for Materials and Coastal Researchen_US
dc.contributor.organizationGraz University of Technologyen_US
dc.date.accessioned2020-01-02T14:00:16Z
dc.date.available2020-01-02T14:00:16Z
dc.date.issued2020-01-01en_US
dc.description.abstractThe present work explores the feasibility of single-phase friction riveting on unreinforced thermoplastics. In single phase, the load is kept constant throughout the process, avoiding the forging phase with higher axial force, used in the conventional process. This process variant can constitute an answer when payload restrictions exist. The results demonstrate the feasibility of single-phase friction riveting on unreinforced polyetherimide plates joined by AA2024 rivets with 5 mm of diameter. A Box-Behnken design of experiments and analysis of variance were used to set parameter matrix and understand the correlations between parameters and joint properties. A large variation of the mechanical energy input was observed (151–529 J). Over-deformation and material rupture were observed in higher energy conditions. Lower energy input yielded a bell-shaped rivet plastic deformation, corresponding to the best performance. The maximum process temperatures varied between 461 and 509 °C. This friction riveting process variant allowed a considerable high mechanical strength to be achieved, with ultimate tensile force of 7486 N, comparable with the two-phase friction riveting process, albeit applying lower axial forces, such as 2400 N. Within the investigated conditions, this study proves the feasibility of the single-phase process, achieving good global mechanical performance and energetically efficient conditions, without forging phase.en
dc.description.versionPeer revieweden
dc.format.extent12
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPina Cipriano, G, Ahiya, A, dos Santos, J F, Vilaça, P & Amancio-Filho, S T 2020, ' Single-phase friction riveting : metallic rivet deformation, temperature evolution, and joint mechanical performance ', Welding in the World, vol. 64, no. 1, pp. 47-58 . https://doi.org/10.1007/s40194-019-00803-3en
dc.identifier.doi10.1007/s40194-019-00803-3en_US
dc.identifier.issn0043-2288
dc.identifier.otherPURE UUID: 67821f76-05dd-4e24-ba6d-fd0a7f40cd47en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/67821f76-05dd-4e24-ba6d-fd0a7f40cd47en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85074753984&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/38733824/ENG_Pina_Cipriano_et_al_Single_phase_Friction_Riveting_Welding_in_the_World.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42057
dc.identifier.urnURN:NBN:fi:aalto-202001021168
dc.language.isoenen
dc.publisherSPRINGER HEIDELBERG
dc.relation.ispartofseriesWelding in the Worlden
dc.rightsopenAccessen
dc.subject.keywordAluminumen_US
dc.subject.keywordFrictionen_US
dc.subject.keywordHybriden_US
dc.subject.keywordJoiningen_US
dc.subject.keywordPlasticsen_US
dc.subject.keywordRivetingen_US
dc.titleSingle-phase friction riveting: metallic rivet deformation, temperature evolution, and joint mechanical performanceen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files