Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Mäkelä, Niko | |
dc.contributor.author | Stenroos, Matti | |
dc.contributor.author | Sarvas, Jukka | |
dc.contributor.author | Ilmoniemi, Risto J. | |
dc.contributor.department | Department of Neuroscience and Biomedical Engineering | |
dc.contributor.department | Department of Neuroscience and Biomedical Engineering | en |
dc.date.accessioned | 2020-02-21T08:03:32Z | |
dc.date.available | 2020-02-21T08:03:32Z | |
dc.date.issued | 2018-02-15 | |
dc.description.abstract | Electrically active brain regions can be located applying MUltiple SIgnal Classification (MUSIC) on magneto- or electroencephalographic (MEG; EEG) data. We introduce a new MUSIC method, called truncated recursively-applied-and-projected MUSIC (TRAP-MUSIC). It corrects a hidden deficiency of the conventional RAP-MUSIC algorithm, which prevents estimation of the true number of brain-signal sources accurately. The correction is done by applying a sequential dimension reduction to the signal-subspace projection. We show that TRAP-MUSIC significantly improves the performance of MUSIC-type localization; in particular, it successfully and robustly locates active brain regions and estimates their number. We compare TRAP-MUSIC and RAP-MUSIC in simulations with varying key parameters, e.g., signal-to-noise ratio, correlation between source time-courses, and initial estimate for the dimension of the signal space. In addition, we validate TRAP-MUSIC with measured MEG data. We suggest that with the proposed TRAP-MUSIC method, MUSIC-type localization could become more reliable and suitable for various online and offline MEG and EEG applications. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 11 | |
dc.format.extent | 73-83 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Mäkelä , N , Stenroos , M , Sarvas , J & Ilmoniemi , R J 2018 , ' Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization ' , NeuroImage , vol. 167 , pp. 73-83 . https://doi.org/10.1016/j.neuroimage.2017.11.013 | en |
dc.identifier.doi | 10.1016/j.neuroimage.2017.11.013 | |
dc.identifier.issn | 1053-8119 | |
dc.identifier.issn | 1095-9572 | |
dc.identifier.other | PURE UUID: 415eb6f6-8d2a-4139-a13a-84435ddc03b5 | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/truncated-rapmusic-trapmusic-for-meg-and-eeg-source-localization(415eb6f6-8d2a-4139-a13a-84435ddc03b5).html | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85034827020&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/41082074/1_s2.0_S1053811917309205_main.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/43190 | |
dc.identifier.urn | URN:NBN:fi:aalto-202002212243 | |
dc.language.iso | en | en |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.relation.ispartofseries | NeuroImage | en |
dc.relation.ispartofseries | Volume 167 | en |
dc.rights | openAccess | en |
dc.subject.keyword | EEG | |
dc.subject.keyword | Electroencephalography | |
dc.subject.keyword | Inverse methods | |
dc.subject.keyword | Magnetoencephalography | |
dc.subject.keyword | MEG | |
dc.subject.keyword | Multiple sources | |
dc.subject.keyword | Source localization | |
dc.subject.keyword | Neurology | |
dc.subject.keyword | Cognitive Neuroscience | |
dc.subject.keyword | 3112 Neurosciences | |
dc.subject.other | Neurology | en |
dc.subject.other | Cognitive Neuroscience | en |
dc.subject.other | 3112 Neurosciences | en |
dc.title | Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |