Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2023
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
6741-6763
Series
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics (AISTATS) 2023, Proceedings of Machine Learning Research, Volume 206
Abstract
Bayesian neural networks (BNNs) can account for both aleatoric and epistemic uncertainty. However, in BNNs the priors are often specified over the weights which rarely reflects true prior knowledge in large and complex neural network architectures. We present a simple approach to incorporate prior knowledge in BNNs based on external summary information about the predicted classification probabilities for a given dataset. The available summary information is incorporated as augmented data and modeled with a Dirichlet process, and we derive the corresponding Summary Evidence Lower BOund. The approach is founded on Bayesian principles, and all hyperparameters have a proper probabilistic interpretation. We show how the method can inform the model about task difficulty and class imbalance. Extensive experiments show that, with negligible computational overhead, our method parallels and in many cases outperforms popular alternatives in accuracy, uncertainty calibration, and robustness against corruptions with both balanced and imbalanced data.Description
| openaire: EC/H2020/101016775/EU//INTERVENE
Keywords
Other note
Citation
Raj, V, Cui, T, Heinonen, M & Marttinen, P 2023, Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach . in F Ruiz, J Dy & J-W van de Meent (eds), Proceedings of The 26th International Conference on Artificial Intelligence and Statistics (AISTATS) 2023 . Proceedings of Machine Learning Research, vol. 206, JMLR, pp. 6741-6763, International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 25/04/2023 . < https://proceedings.mlr.press/v206/raj23a.html >