Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2023

Major/Subject

Mcode

Degree programme

Language

en

Pages

6741-6763

Series

Proceedings of The 26th International Conference on Artificial Intelligence and Statistics (AISTATS) 2023, Proceedings of Machine Learning Research, Volume 206

Abstract

Bayesian neural networks (BNNs) can account for both aleatoric and epistemic uncertainty. However, in BNNs the priors are often specified over the weights which rarely reflects true prior knowledge in large and complex neural network architectures. We present a simple approach to incorporate prior knowledge in BNNs based on external summary information about the predicted classification probabilities for a given dataset. The available summary information is incorporated as augmented data and modeled with a Dirichlet process, and we derive the corresponding Summary Evidence Lower BOund. The approach is founded on Bayesian principles, and all hyperparameters have a proper probabilistic interpretation. We show how the method can inform the model about task difficulty and class imbalance. Extensive experiments show that, with negligible computational overhead, our method parallels and in many cases outperforms popular alternatives in accuracy, uncertainty calibration, and robustness against corruptions with both balanced and imbalanced data.

Description

| openaire: EC/H2020/101016775/EU//INTERVENE

Keywords

Other note

Citation

Raj, V, Cui, T, Heinonen, M & Marttinen, P 2023, Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach . in F Ruiz, J Dy & J-W van de Meent (eds), Proceedings of The 26th International Conference on Artificial Intelligence and Statistics (AISTATS) 2023 . Proceedings of Machine Learning Research, vol. 206, JMLR, pp. 6741-6763, International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 25/04/2023 . < https://proceedings.mlr.press/v206/raj23a.html >