Where could we go? Recommendations for groups in location-based social networks
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2017-06-25
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
93-102
93-102
Series
WebSci 2017 - Proceedings of the 2017 ACM Web Science Conference
Abstract
Location-Based Social Networks (LBSNs) enable their users to share with their friends the places they go to and whom they go with. Additionally, they provide users with recommendations for Points of Interest (POI) they have not visited before. This functionality is of great importance for users of LBSNs, as it allows them to discover interesting places in populous cities that are not easy to explore. For this reason, previous research has focused on providing recommendations to LBSN users. Nevertheless, while most existing work focuses on recommendations for individual users, techniques to provide recommendations to groups of users are scarce. In this paper, we consider the problem of recommending a list of POIs to a group of users in the areas that the group frequents. Our data consist of activity on Swarm, a social networking app by Foursquare, and our results demonstrate that our proposed Geo-Group-Recommender (GGR), a class of hybrid recommender systems that combine the group geographical preferences using Kernel Density Estimation, category and location features and group check-ins outperform a large number of other recommender systems. Moreover, we find evidence that user preferences differ both in venue category and in location between individual and group activities. We also show that combining individual recommendations using group aggregation strategies is not as good as building a profile for a group. Our experiments show that (GGR) outperforms the baselines in terms of precision and recall at different cutoffs.Description
| openaire: EC/H2020/654024/EU//SoBigData
Keywords
Group recommendation, Location-based social networks, Recommender systems
Other note
Citation
Ayala-Gomez, F, Daróczy, B, Mathioudakis, M, Benczúr, A & Gionis, A 2017, Where could we go? Recommendations for groups in location-based social networks . in WebSci 2017 - Proceedings of the 2017 ACM Web Science Conference . ACM, pp. 93-102, ACM Web Science Conference, Troy, New York, United States, 25/06/2017 . https://doi.org/10.1145/3091478.3091485