Where could we go? Recommendations for groups in location-based social networks

No Thumbnail Available

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2017-06-25

Major/Subject

Mcode

Degree programme

Language

en

Pages

10
93-102

Series

WebSci 2017 - Proceedings of the 2017 ACM Web Science Conference

Abstract

Location-Based Social Networks (LBSNs) enable their users to share with their friends the places they go to and whom they go with. Additionally, they provide users with recommendations for Points of Interest (POI) they have not visited before. This functionality is of great importance for users of LBSNs, as it allows them to discover interesting places in populous cities that are not easy to explore. For this reason, previous research has focused on providing recommendations to LBSN users. Nevertheless, while most existing work focuses on recommendations for individual users, techniques to provide recommendations to groups of users are scarce. In this paper, we consider the problem of recommending a list of POIs to a group of users in the areas that the group frequents. Our data consist of activity on Swarm, a social networking app by Foursquare, and our results demonstrate that our proposed Geo-Group-Recommender (GGR), a class of hybrid recommender systems that combine the group geographical preferences using Kernel Density Estimation, category and location features and group check-ins outperform a large number of other recommender systems. Moreover, we find evidence that user preferences differ both in venue category and in location between individual and group activities. We also show that combining individual recommendations using group aggregation strategies is not as good as building a profile for a group. Our experiments show that (GGR) outperforms the baselines in terms of precision and recall at different cutoffs.

Description

| openaire: EC/H2020/654024/EU//SoBigData

Keywords

Group recommendation, Location-based social networks, Recommender systems

Other note

Citation

Ayala-Gomez, F, Daróczy, B, Mathioudakis, M, Benczúr, A & Gionis, A 2017, Where could we go? Recommendations for groups in location-based social networks . in WebSci 2017 - Proceedings of the 2017 ACM Web Science Conference . ACM, pp. 93-102, ACM Web Science Conference, Troy, New York, United States, 25/06/2017 . https://doi.org/10.1145/3091478.3091485