Nudged elastic band calculations accelerated with Gaussian process regression based on inverse interatomic distances

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKoistinen, Olli-Pekkaen_US
dc.contributor.authorÁsgeirsson, Vilhjálmuren_US
dc.contributor.authorVehtari, Akien_US
dc.contributor.authorJonsson, Hannesen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Vehtari Akien
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.contributor.organizationUniversity of Icelanden_US
dc.date.accessioned2020-10-23T10:09:11Z
dc.date.available2020-10-23T10:09:11Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2020-10-22en_US
dc.date.issued2019-12-10en_US
dc.description.abstractCalculations of minimum energy paths for atomic rearrangements using the nudged elastic band method can be accelerated with Gaussian process regression to reduce the number of energy and atomic force evaluations needed for convergence. Problems can arise, however, when configurations with large forces due to short distance between atoms are included in the data set. Here, a significant improvement to the Gaussian process regression approach is obtained by basing the difference measure between two atomic configurations in the covariance function on the inverted inter-atomic distances and by adding a new early stopping criterion for the path relaxation phase. This greatly improves the performance of the method in two applications where the original formulation does not work well: a dissociative adsorption of an H2 molecule on a Cu(110) surface and a diffusion hop of an H2O molecule on an ice Ih(0001) surface. Also, the revised method works better in the previously analyzed benchmark application to rearrangement transitions of a heptamer island on a surface, requiring fewer energy and force evaluations for convergence to the minimum energy path.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKoistinen, O-P, Ásgeirsson, V, Vehtari, A & Jonsson, H 2019, ' Nudged elastic band calculations accelerated with Gaussian process regression based on inverse interatomic distances ', Journal of Chemical Theory and Computation, vol. 15, no. 12, pp. 6738-6751 . https://doi.org/10.1021/acs.jctc.9b00692en
dc.identifier.doi10.1021/acs.jctc.9b00692en_US
dc.identifier.issn1549-9618
dc.identifier.issn1549-9626
dc.identifier.otherPURE UUID: 92de2b49-607b-490a-99c5-4420659ad49een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/92de2b49-607b-490a-99c5-4420659ad49een_US
dc.identifier.otherPURE LINK: https://doi.org/10.26434/chemrxiv.8850440.v2en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40653674/SCI_Koistinen_Nudged_elastic_band.manuscript_GPNEB19_v3.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/47066
dc.identifier.urnURN:NBN:fi:aalto-202010235953
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesJournal of Chemical Theory and Computationen
dc.relation.ispartofseriesVolume 15, issue 12, pp. 6738-6751en
dc.rightsopenAccessen
dc.titleNudged elastic band calculations accelerated with Gaussian process regression based on inverse interatomic distancesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files