Euclid preparation XXXIV. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2024-03-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
15
Series
Astronomy and Astrophysics, Volume 683, pp. 1-15
Abstract
Context. The cosmological surveys that are planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, so that no biases are introduced into the estimation of the cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as has previously been shown in literature. Aims. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by a previous work, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey. We aim to assess their impact and to quantify the bias on the measurement of cosmological parameters that would be caused if this effect were neglected. Methods. We performed this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as is expected to be obtained from the Euclid survey. We then used a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from these simulated observations. Results. When the linear RSD is neglected, significant biases are caused when galaxy correlations are used alone and when they are combined with cosmic shear in the so-called 3 × 2 pt approach. These biases can be equivalent to as much as 5σ when an underlying ΛCDM cosmology is assumed. When the cosmological model is extended to include the equation-of-state parameters of dark energy, the extension parameters can be shifted by more than 1σ.
Description
Publisher Copyright: © The Authors 2024.
Keywords
cosmological parameters, cosmology: theory, large-scale structure of Universe
Other note
Citation
Tanidis, K, Cardone, V F, Martinelli, M, Tutusaus, I, Camera, S, Aghanim, N, Amara, A, Andreon, S, Auricchio, N, Baldi, M, Bardelli, S, Branchini, E, Brescia, M, Brinchmann, J, Capobianco, V, Carbone, C, Carretero, J, Casas, S, Castellano, M, Cavuoti, S, Cimatti, A, Cledassou, R, Congedo, G, Conversi, L, Copin, Y, Corcione, L, Courbin, F, Courtois, H M, Da Silvay, A, Degaudenzi, H, Dinis, J, Dubath, F, Dupac, X, Dusini, S, Farina, M, Farrens, S, Ferriol, S, Fosalba, P, Frailis, M, Franceschi, E, Fumana, M, Galeotta, S, Garilli, B, Gillard, W, Gillis, B, Niemi, S M, Schneider, P, Wang, Y, Gozaliasl, G, Sánchez, A G & Euclid Collaboration 2024, ' Euclid preparation XXXIV. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear ', Astronomy and Astrophysics, vol. 683, A17, pp. 1-15 . https://doi.org/10.1051/0004-6361/202347870