Nonlinear finite element analysis of lattice core sandwich plates

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNampally, Praneethen_US
dc.contributor.authorKarttunen, Anssi T.en_US
dc.contributor.authorReddy, J. N.en_US
dc.contributor.departmentDepartment of Mechanical Engineeringen
dc.contributor.groupauthorMarine Technologyen
dc.contributor.organizationTexas A&M Universityen_US
dc.date.accessioned2020-02-21T08:04:47Z
dc.date.available2020-02-21T08:04:47Z
dc.date.issued2020-05en_US
dc.description| openaire: EC/H2020/745770/EU//SANDFECH
dc.description.abstractA displacement-based, geometrically nonlinear finite element model is developed for lattice core sandwich panels modeled as 2-D equivalent single-layer (ESL), first-order shear deformation theory (FSDT) micropolar plates. The nonlinearity is due to the moderate macrorotations of the plate which are modeled by including the von Karman nonlinear strains in the micropolar strain measures. Weak-form Galerkin formulation with linear Lagrange interpolations is used to develop the displacement finite element model. Selective reduced integration is used to eliminate shear locking and membrane locking. The novel finite element model is used to study the nonlinear bending and linear free vibrations of web-core and pyramid core sandwich panels. Clamped and free edge boundary conditions are considered for the first time for the 2-D micropolar ESL-FSDT plate theory. The present 2-D finite element results are in good agreement with the corresponding detailed 3-D FE results for the lattice core sandwich panels. The 2-D element provides computationally cost-effective solutions; in a nonlinear bending example, the number of elements required for the 2-D micropolar plate is of the order 10(3) , whereas for the corresponding 3-D model the order is 10(5) .en
dc.description.versionPeer revieweden
dc.format.extent12
dc.identifier.citationNampally, P, Karttunen, A T & Reddy, J N 2020, ' Nonlinear finite element analysis of lattice core sandwich plates ', INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, vol. 121, 103423 . https://doi.org/10.1016/j.ijnonlinmec.2020.103423en
dc.identifier.doi10.1016/j.ijnonlinmec.2020.103423en_US
dc.identifier.issn0020-7462
dc.identifier.otherPURE UUID: 81ca0146-9666-4b03-bac7-8600676be4d7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/81ca0146-9666-4b03-bac7-8600676be4d7en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85079098179&partnerID=8YFLogxKen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/43204
dc.identifier.urnURN:NBN:fi:aalto-202002212257
dc.language.isoenen
dc.publisherElsevier Limited
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/745770/EU//SANDFECHen_US
dc.relation.ispartofseriesINTERNATIONAL JOURNAL OF NON-LINEAR MECHANICSen
dc.relation.ispartofseriesVolume 121en
dc.rightsrestrictedAccessen
dc.subject.keywordConstitutive modelingen_US
dc.subject.keywordFinite elementen_US
dc.subject.keywordGeometric nonlinearityen_US
dc.subject.keywordLattice materialen_US
dc.subject.keywordMicropolar platesen_US
dc.subject.keywordNatural frequenciesen_US
dc.subject.keywordNonlinear bendingen_US
dc.titleNonlinear finite element analysis of lattice core sandwich platesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files