Unfolding system-environment correlation in open quantum systems : Revisiting master equations and the Born approximation
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
14
Series
PHYSICAL REVIEW RESEARCH, Volume 6, issue 1, pp. 1-14
Abstract
Understanding system-environment correlations in open quantum systems is vital for various quantum information and technology applications. However, these correlations are often overlooked or hidden in derivations of open-quantum-system master equations, especially when applying the Born approximation. To address this issue, given a microscopic model, we demonstrate how to retain system-environment correlation within commonly used master equations, such as the Markovian Lindblad, Redfield, second-order time convolutionless, second-order Nakajima-Zwanzig, and second-order universal Lindblad-like equations. We show that each master equation corresponds to a particular approximation on the system-environment correlation operator. In particular, our analysis exposes the form of the hidden system-environment correlation in the Markovian Lindblad equation derived using the Born approximation. We also identify that the processes leading to the Redfield equation yield an inaccurate initial-time system-environment correlation approximation. By fixing this problem, we propose a corrected Redfield equation with an improved prediction for early stages of the time evolution. We further illustrate our results in two examples, which imply that the second-order universal Lindblad-like equation captures correlation more accurately than the other standard master equations.Description
Publisher Copyright: © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Keywords
Other note
Citation
Babu, A P, Alipour, S, Rezakhani, A T & Ala-Nissila, T 2024, ' Unfolding system-environment correlation in open quantum systems : Revisiting master equations and the Born approximation ', PHYSICAL REVIEW RESEARCH, vol. 6, no. 1, 013243, pp. 1-14 . https://doi.org/10.1103/PhysRevResearch.6.013243